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 The Internet of Things (IoT) is gaining popularity, leading to the widespread use of 

remote communication modules (LoRa), known for their energy efficiency and wide 

coverage range. However, as the number of LoRa modules used in IoT networks grows, 

the possibility of interference from third-party devices operating at the same frequency 

becomes a concern. This study aimed to examine the vulnerability of LoRa modules to 

electromagnetic interference (EMI) when transmitting text messages and images. 

Radiation emission conditions were measured in the test area for evaluating LoRa 

module performance, and susceptibility to interference was assessed under non-line-of-

sight (NLOS) conditions. The study's outcomes reveal that interference with LoRa 

transmitters has no noticeable effect on the range within a distance of up to 50 meters. 

In contrast, the interference power required to disrupt the LoRa receiver decreases with 

increasing distance. Additionally, interference from frequencies outside the designated 

LoRa working frequency (915 MHz) has no discernible impact on module performance. 

Introducing a delivery delay check demonstrates consistent performance even in 

interference. These findings deepen our understanding of the susceptibility of LoRa 

modules to tampering, emphasizing the importance of implementing effective 

disruption management strategies in IoT deployments. By considering the potential 

impact of electromagnetic interference (EMI) on LoRa modules, developers can design 

more robust IoT networks, ensuring reliable communication and improved system 

performance. Overall, the research focuses on the interference characteristics of LoRa 

modules, providing insights for developing resilient and interference-resistant IoT 

solutions. It underscores the necessity of addressing interference issues to ensure the 

reliable operation of IoT devices across diverse environments. 
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The Internet of Things (IoT) is a network paradigm that enables communication among diverse 

devices [1]. Considerations for IoT deployments encompass numerous factors, including node cost, network 

cost, battery life, data rate (throughput), latency, mobility, range, and deployment model [1]–[7]. Long Range 

(LoRa) communication modules are widely used in the Internet of Things (IoT) field [8]. The LoRa module 

can be applied as a data transmission module for the Wireless Sensor Network (WSN) [9]. One of the reasons 

LoRa modules are widely used today is their energy efficiency and wide range [10]–[15]. 

Every electronic device emits electromagnetic interference, and the LoRa module is no exception. 

The increasingly widespread use of LoRa modules does not rule out the possibility of interference between 

LoRa modules. Research has been conducted to propose a method for estimating network congestion caused 

by many self-managed LoRa network deployments [16]. However, research on the ability of LoRa 

communication modules to withstand electromagnetic interference (EMI) when transmitting information is not 

widely known [17]. Factors that affect EMI can be categorized as the nature of electronic equipment that emits 

noise, the distance between electronic equipment, and the equipment's susceptibility to electromagnetic waves 

[18]. 

Previous research has focused on the performance of LoRa modules in the presence of interference 

from other LoRa modules operating on the same frequency. The LoRa module is installed in a building, so it 

is known that the LoRa signal coverage covers most of the building locations. The LoRa signal is difficult to 

receive at the center of the building due to interference [19]. In addition, research has been carried out on the 

performance of LoRa against interference in densely populated areas, where there are many signals transmitting 

devices with different frequencies. This test revealed a frequency shift in the LoRa system due to interference 

caused by non-directional reception on LoRa [20]. 

However, in these studies, no research has been carried out to determine the level of interference that 

can interfere with the performance of the LoRa module from third-party devices with the same working 

frequency as the LoRa module. The researcher needs to determine how many EMI levels can affect the 

performance of the LoRa communication module when sending text and image messages. In this study, the 

authors conducted a study to determine the vulnerability of the LoRa communication module to interference. 

The author focuses on testing the LoRa communication module connected to a Smartphone on the transmitter 

and receiver sides when sending text and image messages. Then, the LoRa module susceptibility testing is 

carried out against interference by alternating interference on the transmitter and receiver sides. The LoRa 

module used in this study is the TTGO ESP32 LoRa, with a working frequency of 915 MHz. 

 

2. METHOD 

The research process involves several stages. Figure 1 illustrates the research flowchart. The study 

was conducted under Non-Line of Sight (NLOS) conditions. It was divided into two stages: measuring radiation 

emission conditions in the test area, the Transmission Media Laboratory of Politeknik Caltex Riau, and testing 

the vulnerability of the LoRa module to interference. The flow chart for testing the susceptibility of the LoRa 

module to interference can be seen in Figure 2. 

 

Figure 1. Research Flow 



Hariyawan, et al. / J. Electr. Tech. Explor., Vol. 1, No. 2, December 2023 :  53 – 62                   55 

 

 

 

 

 

 

Figure 2. Test Flow 

 

2.1. Measurement of Radiation Emission Conditions in the LoRa Module Performance Test Area in Non-Line 

of Sight Conditions  

Measurement of radiation emission conditions in the LoRa module performance test area is carried 

out at the test site to know the signal level conditions around the LoRa device to be tested so that the analysis 

process can be carried out accurately. Measurements were made using the Aaronia Antenna and Spectrum 

Analyzer. Antena Aaronia is connected to Spectrum Analyzer using SMA to N cable. Then, the antenna is 

directed in all directions and takes data in the direction of the highest voltage level on the Spectrum Analyzer 

designation. 

 

2.2. Lora Module Performance Testing Against Interference in Non-Line of Sight Conditions 

LoRa module susceptibility testing against interference is carried out by emitting interference signals 

when the LoRa module receives and sends messages. Devices used in transmitting interference are a Signal 

Generator and an Aaronia Antenna. There is an obstacle between the transmitter and receiver module and given 

a certain distance, namely 25 m to 100 m. The power level of the interference signal emitted from the Signal 

Generator is started based on the amount of transmit power of the LoRa module, obtained from the 

measurement of the radiation emission produced by the LoRa module at a frequency of 915 MHz. Then, the 

power level of the interference signal is increased or decreased based on the response of the LoRa module 

when a signal is emitted from the Signal Generator so that the actual power level is known that can interfere 

with the performance of the TTGO ESP32 LoRa module. 

LiveChat Application sends text messages using the Serial USB Terminal Application. 

The frequency used in this test is 868 MHz to 925 MHz with details, namely: 

a. 915 MHz is the working frequency of the LoRa module used. 

b. 868 MHz is the working frequency of the LoRa module, which is close to the working frequency of the 

TTGO ESP32 LoRa module. 

c. 900 MHz is the working frequency of GSM [21]. 

d. 914 MHz and 916 MHz are frequency channels adjacent to the working frequency of the TTGO ESP32 

LoRa module. 

e. 923-925 MHz is the LoRa planning frequency in Indonesia [22]. 

The block diagram for testing the LoRa module susceptibility to interference can be seen in Figure 3 

and Figure 4. 
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3. RESULTS AND DISCUSSIONS 

3.1 Pulse Measurement of Radiation Emission Conditions in the LoRa Module Performance Test 

Area in Non-Line of Sight Conditions 

 The measurement begins with measuring the radiation emission conditions around the test location; 

the measurement results are indicated in Error! Reference source not found.. The value of the frequency 

with a high power level in the radiated emission measurement of the NLOS test area is the frequency of the 2G 

(945 MHz), 3G (2.115 GHz), and 4G (1.825 GHz) networks [23]–[25]. This frequency does not affect the 

performance when testing the LoRa module's performance of the LoRa module against interference during 

NLOS conditions. 

 

3.2 Lora Module Performance Testing Against Interference in Non-Line of Sight Conditions 

 Testing the performance of the LoRa module against interference in Non-Line of Sight (LOS) 

conditions is carried out at a distance of 25-100 m. The test was carried out under three conditions: when there 

was no interference, interference at the LoRa transmitter, and interference at the LoRa receiver. 

 

 
Figure 3. Block Diagram of LoRa Receiver Module Susceptibility Testing Circuit to Interference 

 

 
Figure 4. Block Diagram of LoRa Transmitter Module Susceptibility Testing Circuit to Interference 

 

3.2.1 Testing Without Interference 

LoRa module performance testing is performed at 25-100 m without interference. Sending messages 

can be done well. The LoRa receiver can receive each character of the message the LoRa transmitter sends. 

The image sent by the LoRa module can also be converted properly by the LoRaChat application on the 

Smartphone connected to the LoRa receiver. Whereas at 75 m to 100 m, the receiver module cannot receive 

text messages and images the transmitter sends. At this distance, there is a building obstacle so that the signal 

emitted by the LoRa transmitter is reflected and does not reach the LoRa receiver. 

 
3.2.2 Interference Testing on LoRa Transmitter 

Based on Table 1, the interference on the LoRa transmitter during NLOS conditions does not affect 

the distance range of the LoRa module from 25 m to 50 m. Even though the distance is getting further, the 

LoRa module is still disturbed at the same interference signal level, which is -46.78 dBm. So, it can be 
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concluded that the farther the distance from the LoRa transmitter module to the LoRa receiver does not affect 

the interference value that can interfere with the performance of the LoRa transmitter module. 

 

 
Figure 5. Graph of Measurement of Radiation Emission Conditions in the LoRa Module Performance Testing 

Area in Non-Line of Sight Conditions 

 

Table 1. Effect of Interference on LoRa Transmitter on Distance 

Distance Tx 

and Rx (m) 

SSG Power 

Level (dBm) 

Power Levels Readable by 

Spectrum Analyzer (dBm) 

Status 

25 

≤ -3 ≤ -47.37 Succeed 

-4 to 2 -46.78 to -39.91 Annoyed 

≥ 3 ≥ -39.46 Fail 

50 

≤ -3 ≤ -47.37 Succeed 

-4 to 2 -46.78 to -39.91 Annoyed 

≥ 3 ≥ -39.46 Fail 

 
3.2.3 Interference Testing on LoRa Receiver 

In Table 2, it can be seen how the condition of the message sent after interference is given to the LoRa 

receiver module along with the power level that can interfere with the performance of the LoRa module in 

Non-Line of Sight conditions. The farther the distance between the LoRa transmitter and receiver, the lower 

the power level required to interfere with the performance of the LoRa module. This susceptibility to 

interference is due to the decreased signal strength received by the LoRa receiver from the transmitter when 

positioned at greater distances. 

 
Table 2. Effects of Interference on LoRa Receivers on Distance 

Distance 

Tx and 

Rx (m) 

SSG Power 

Level (dBm) 

Power Levels Readable 

by Spectrum Analyzer 

(dBm) 

Status 

25 

≤ -35 ≤ -73.88 Succeed 

-34 to -28 -72.95 to -67.37 Annoyed 

≥ -27 ≥ -66.44 Fail 

50 

 

≤ -38 ≤ -76.67 Succeed 

-37 to -33 -75.74 to -72.02 Annoyed 

≥ -32 ≥ -71.09 Fail 

 
Examples of successful message sending are shown in Figure  and Figure 7.. Examples of interrupted 

message sending are shown in Figure  and Figure . An example of sending a failed message is shown in Figure  
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and Figure 1. Figures 9 and 11 were obtained using the homemade LoRaChat App, while Figure 10 was 

obtained using the "Serial USB Terminal" application. 

 

 
Figure 6. Text Message Sending Successful 

 

 
Figure 7. Image Message Sending Successful 

 

 
Figure 8. Interrupted Text Message Delivery 

 

3.2.4 Comparison of LoRa Module Performance when Exposed and Not Exposed to Interference 

Based on Table 3, interference does not affect the delay in sending messages and images; the delay 

value obtained is the same for each delivery. At 25-50 m, the LoRa module can transmit information well 

despite being exposed to interference at the transmitter and receiver. However, if the interference power level 

displayed on the LoRa module reaches a specific number, the performance of the LoRa module will be 

disrupted. Lora transmitter performance will be disrupted if the interference power reaches -46.78 dBm while 

the LoRa receiver is disturbed at different interference signal power levels at each distance. The farther the 

receiver is from the transmitter, the lower the interference power level. The comparison of the power level of 

the interference signal that affects the performance of the LoRa transmitter and receiver module is shown in 

Figure 2. 
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Figure 9. Interrupted Image Message Delivery 

 

 
Figure 10. Text Message Sending Failed 

 

 
Figure 1. Picture Message Sending Failed 

 
Table 3. Comparison of LoRa Module Performance when Exposed and Not Exposed to Interference 

No. Condition Distance 

(m) 

Message 

Delay (s) 

Picture Delay 

(s) 

Status 

1 No 

Interference 

50 1.55 7.23 Succeed 

2 Interference in 

Tx 

50 1.55 7.23 Distracted at -46.78 dBm 

3 Interference in 

Rx 

50 1.55 7.23 The farther Rx is from 

Tx, it will be interrupted 

at lower power levels. 
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Figure 2. Graph of the Effect of Interference on the Performance of LoRa Transmitters and Receivers in Non-

Line of Sight Conditions 

 
3.2.5 Interference Testing from Frequency Other Than 915 MHz 

The test results of transmitting signals at 868 MHz, 900 MHz, 914 MHz, 916 MHz, and 923-925 MHz 

(other than the LoRa working frequency) demonstrate that LoRa modules can function effectively. The test 

was also carried out by emitting the maximum power that the Signal Generator could emit, which was 13 dBm, 

but the LoRa module could still work well. 

 
3.2.6 Delivery Delay 

A comparison of the delay in sending text messages and images can be found in Table 4. The delivery 

delay of the LoRa module before and after the information is provided remains consistent. This consistency is 

attributed to the fact that the text and images tested are identical (Text: Pengujian Kinerja EMI pada Modul 

LoRa, Image: Cherry Fruit Pixel). The delay in sending the LoRa module is influenced by the size of the packet 

(number of characters) sent; the more characters sent, the greater the delay in sending, and vice versa. If the 

interference signal is not too strong, then the interference signal does not affect the transmission delay. 

 

Table 4. Delivery Delay 

Distance 

(m) 

No Interference (s) With interference (s) 

Message 

Delay  

Picture Delay  Message 

Delay  

Picture Delay  

25 1.55 7.23 1.55 7.23 

50 1.55 7.23 1.55 7.23 

75 - - - - 

100 - - - - 

 

 

4. CONCLUSION 

LoRa modules exhibit remarkable resilience against interference, with no significant impact on 

communication distances within the first 50 meters. This robustness assures consistent and reliable data 

transmission in shorter-range IoT applications. Nevertheless, as the communication distance extends beyond 

50 meters, the power level of interference required to disrupt the LoRa receiver decreases. This distance-

dependent susceptibility underscores the importance of interference management strategies, particularly in 

scenarios involving extended communication ranges. LoRa modules have proven their ability to withstand 

interference from frequencies other than their working frequency (915 MHz). They remain functional and 

maintain reliable communication, even in the presence of various frequency sources. Notably, the examination 

of delivery delay reveals consistent module performance despite interference, highlighting the robustness of 

LoRa technology. This research contributes valuable insights to the field of IoT and LoRa technology. It 

highlights the pressing need for proactive interference management strategies in IoT deployments, especially 

when extended communication distances are involved. By addressing interference challenges, developers can 

design IoT networks that are resilient, interference-resistant, and capable of delivering superior system 

performance in diverse environmental conditions. The findings of this study underscore the critical role of 

interference management in ensuring the reliable operation of IoT devices across many scenarios. In turn, they 
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pave the way for developing more robust and dependable IoT solutions, reinforcing the IoT's potential to 

transform industries and enhance our daily lives. 
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