Early Detection of Microsleep in Motorcycle Helmet Based on Pulse Sensor

Main Article Content

Putri Madona
Andres L.T

Abstract

Microsleep can be defined as a brief condition in which someone unintentionally falls asleep for a few seconds to several minutes. This condition can occur in anyone and poses a high potential risk, especially when engaged in activities that require high concentration, such as driving. To detect and address the potential dangers of microsleep while driving, this research has designed a smart helmet capable of early detection of signs of microsleep and taking actions to awaken the rider. This system uses a pulse sensor connected to an Arduino and placed on the backside of the helmet. Detection of beats per minute (bpm) is crucial to determine whether the rider is drowsy or not. This is essential for providing early warnings to the rider. If the rider's bpm reading is <60, indicating drowsiness, the system activates a vibrator to shake the helmet. If this condition persists for more than 7 seconds, the speaker also activates to play music, which will only stop when the bpm reading is >60. Testing was conducted on 5 test subjects, with each subject undergoing 5 trial tests, resulting in a total of 25 test runs. The results indicate that the designed system is capable of reading microsleep conditions and activating the vibrator and music according to the configured settings.

Article Details

How to Cite
Madona, P., & Tobing, A. L. (2023). Early Detection of Microsleep in Motorcycle Helmet Based on Pulse Sensor. Journal of Electronics Technology Exploration, 1(2), 45 - 52. https://doi.org/10.52465/joetex.v1i2.228
Section
Articles

References

M. As et al., “ANALISIS POLA TIDUR TIM ELIT FUTSAL MENUJU PON PAPUA DI MASA PANDEMI COVID-19,” 2021. [Online]. Available: http://journal.unnes.ac.id/sju/index.php/jssf

Dean C.J.M. Pardede, Arthur M. Rumagit, and Sumenge Tangkawarouw, “Deteksi Pengendara Mengantuk Menggunakan Metode Eye Tracking Berbasis Raspberry Pi,” 2022.

M. L. S. Zainy, G. B. Pratama, R. R. Kurnianto, and H. Iridiastadi, “Fatigue Among Indonesian Commercial Vehicle Drivers: A Study Examining Changes in Subjective Responses and Ocular Indicators,” International Journal of Technology, vol. 14, no. 5, pp. 1039–1048, 2023, doi: 10.14716/ijtech.v14i5.4856.

Indrachapa Buwaneka Bandara, “DRIVER DROWSINESS DETECTION BASED ON EYE BLINK,” Thesis, Not Published, Faculty of Enterprise and Innovation, Brunel University, Mar. 2009.

Siti Khumaerah Mufti, “SISTEM REKOGNISI KANTUK PADA PENGENDARA MOBIL BERBASIS ANDROID,” Skripsi, Tidak dipublikasikan, Fakultas Teknik, Universitas Hasanuddin, 2018.

Sarah Mulia Putri, Zaqi Islammaulana, and Kemal Syarifudin, “MOTOR-RIDER SLEEPINESS DETECTOR (MLEC) : ALAT PENCEGAH TIDUR PENGENDARA MOTOR DENGAN JOK GETAR.”

Amol M.Malla, Paul R. Davidson, Philip J.Bones, and Richard D.Jones, “2010 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society.,” in 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society., IEEE, 2010.

A. Watson and G. Zhou, “Microsleep Prediction Using an EKG Capable Heart Rate Monitor,” in Proceedings - 2016 IEEE 1st International Conference on Connected Health: Applications, Systems and Engineering Technologies, CHASE 2016, Institute of Electrical and Electronics Engineers Inc., Aug. 2016, pp. 328–329. doi: 10.1109/CHASE.2016.30.

F. Muhammad, M. Ikbal, M. Rizal, S. Alam, S. Komputer, and S. Handayani, “Rancang Bangun Sistem Anti Ngantuk Pada Pengendara Berbasis Arduino Nano,” 2019.

Rangga Rinaldiansyah, “RANCANG BANGUN HELM PENCEGAH KANTUK DENGAN GATARAN DAN ALARM PENDETEKSI BAHAYA PENCURIAN BERBASIS MIKROKONTROLER 8535,” Skripsi, Tidak dipublikasikan, Jurusan Teknik Komputer, Politeknik Negeri Sriwijaya Palembang, 2016.

I. Mahmud, “RANCANG BANGUN ALAT PERINGATAN KANTUK DENGAN SENSOR PULSE UNTUK PENGENDARA MINI BUS”.

Inesti Rudangta Brahmana, “PERANCANGAN DAN IMPLEMENTASI HELM PENCEGAH KANTUK DENGAN GETARAN DAN BUNYI MENGGUNAKAN SENSOR DETAK JANTUNG BERBASIS MIKROKONTROLER ATMEGA 328,” Skripsi, Tidak dipublikasikan, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Sumatera Utara, 2020.

L. Fatmawati, A. Subakti Ariyanto, R. Kalila Firdausi, and D. Rakis Agustina, “MiDA (Microsleep Detection Base on Arduino),” 2022. [Online]. Available: www.ijisrt.com

Universitas Gadjah Mada, Sathāban Thēknōlōyī Phra Čhō̜mklao Čhaokhun Thahān Lātkrabang, Institute of Electrical and Electronics Engineers. Indonesia Section, Institute of Electrical and Electronics Engineers, I. iBioMed (Conference) (1st : 2016 : Yogyakarta, and I. National Conference on Information Technology and Electrical Engineering (8th : 2016 : Yogyakarta, “Proceedings of 2016 8th International Conference on Information Technology and Electrical Engineering (ICITEE) : ICITEE 2016 : ‘Empowering Technology for Better Future’ : Eastparc Hotel, Yogyakarta, 5-6 October 2016,” in Proceedings of 2016 8th International Conference on Information Technology and Electrical Engineering (ICITEE), Yogyakarta: IEEE, 2016.

G. IEEE Engineering in Medicine and Biology Society. Annual International Conference (41st : 2019 : Berlin, IEEE Engineering in Medicine and Biology Society, and Institute of Electrical and Electronics Engineers, Detection and Prediction of Microsleeps from EEG using Spatio-Temporal Patterns.

M. Golz and D. Sommer, “Monitoring of Drowsiness and Microsleep,” in 32nd Annual International Conference of the IEEE EMBS, 2010.

W. Y. Leong, D. P. Mandic, M. Golz, and D. Sommer, “BLIND EXTRACTION OF MICROSLEEP EVENTS,” in Digital Signal Processing, 2007 15th International Conference on, IEEE, 2007. Accessed: Oct. 16, 2023. [Online]. Available: https://www.researchgate.net/deref/http%3A%2F%2Fieeexplore.ieee.org%2Fxpl%2Ffreeabs_all.jsp%3Farnumber%3D4288555?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlIjoiX2RpcmVjdCIsInBvc2l0aW9uIjoicGFnZUhlYWRlciJ9fQ

Abdul Baseer, Stephen J. Weddell, and Richard D.Jones, “Prediction of Microsleeps Using Pairwise Joint Entropy and Mutual Information between EEG channels,” in IEEE Engineering in Medicine and Biology Society, Cheju Isand, Korea: IEEE, 2017.

Mustofa Amirullah, “SISTEM PERINGATAN DINI MENGGUNAKAN DETEKSI KEMIRINGAN KEPALA PADA PENGEMUDI KENDARAAN BERMOTOR YANG MENGANTUK,” Skripsi, Tidak diterbitkan, Fakultas Teknologi Elektro, Institut Teknologi Sepuluh Nopember, 2018.

Abstract viewed = 181 times