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Local ingredients and Indonesia's diverse culinary traditions play an
important role in shaping people's health and eating habits. Understanding
the nutritional profile of Indonesian food is crucial to promoting healthier
food choices. This study aims to classify Indonesian food and beverages
based on their nutritional content, with a focus on calories, protein, fat, and
carbohydrates. To achieve this, a dataset of 1,346 food items was
preprocessed using normalization techniques to improve model
performance. Each food item was categorized as High Protein, High Fat, or
High Carbohydrate based on its dominant macronutrient content. Five
machine learning models which are K-Nearest Neighbors, Decision Trees,
Support Vector Machines, Random Forest, and Multilayer Perceptron-were
used and compared. Among these models, the Support Vector Machine
achieved the highest classification accuracy of 99.1%. These findings
demonstrate the potential of machine learning in nutrition research,
providing a basis for developing data-driven dietary recommendations
tailored to individual nutritional needs. This research bridges traditional
dietary research with modern computational approaches, offering insights
for public health initiatives and personalized nutrition planning.

This is an open-access article under the CC BY-SA license.
BY SA

1. Introduction

Indonesia's geographical diversity and rich cultural heritage are reflected in its cuisine, which varies
greatly across regions. Traditional Indonesian foods and beverages not only offer distinctive flavors but
also have unique nutritional compositions, shaped by centuries-old cooking methods and the use of
local ingredients. For example, the diverse types of soto in Indonesia illustrate the complexity of
analyzing and classifying its nutritional aspects [1]. As global awareness of nutrition and health
increases, accurately assessing and classifying traditional foods is becoming increasingly important for
dietary research and public health initiatives. Understanding food and nutrient intake is critical to
understanding how dietary habits affect public health outcomes. However, traditional dietary

* Corresponding Author:

Bagus Al-Qohar,

Department of Computer Science,

Universitas Negeri Semarang,

Semarang, Indonesia.

Email: bagusximipab@students.unnes.ac.id

23


https://shmpublisher.com/index.php/joiser
https://shmpublisher.com/index.php/joiser/article/view/528
mailto:bagusximipa6@students.unnes.ac.id
https://creativecommons.org/licenses/by-sa/4.0/

assessment methods often face limitations, especially in culturally diverse countries such as Indonesia
[2]. The advent of machine learning offers a promising solution by enabling more precise and efficient
analysis of complex food data, thus supporting evolving food trends influenced by both modern and
traditional cuisines.

Various machine learning models have demonstrated their ability to classify foods based on
nutritional characteristics. K-Nearest Neighbors (KNN), for example, has been effectively used to
categorize foods with similar nutritional content, providing an easy and efficient classification method
[3]. Despite its simplicity, KNN's reliance on labeled data and sensitivity to data distribution patterns
may limit its performance on more complex data sets that require higher accuracy. Decision Tree has
also been used as a decision support system in food categorization and other fields such as medicine,
thanks to its interpretability and hierarchical structure [4]. In the context of Indonesian cuisine, the
Decision Tree facilitates the identification of key nutritional elements that differentiate various food
categories, providing valuable insights. However, its susceptibility to overfitting necessitates careful
tuning and the use of ensemble techniques to improve performance.

Support Vector Machines (SVM) are another popular choice for high-dimensional classification
tasks. SVMs excel at distinguishing sophisticated dietary profiles by constructing a hyperplane that
maximizes the margin between classes [5]. However, its performance can be significantly affected by
the choice of kernel and class balance, especially when dealing with unbalanced datasets such as
Indonesian traditional and modern foods. Random Forest classifiers address this challenge by
effectively handling noisy and imbalanced data. By utilizing features such as color and texture, the
Random Forest model achieves high accuracy in identifying traditional Indonesian foods [6]. Its
ensemble nature helps to reduce overfitting and improve generalization, making it suitable for large
and complex food datasets. In addition, the feature importance ranking of Random Forest provides
deeper insight into the most influential nutritional factors for classification.

Advanced neural network methods, particularly Multilayer Perceptron (MLP), are well suited to
capture complex patterns in nutritional data from dietary supplements, foods, and beverages. MLP can
identify complex interactions between nutrients, achieving high accuracy in classifying traditional foods
with diverse nutritional profiles [7]. However, the application of MLPs in nutrition research is often
constrained by the need for large computational resources and large data sets. A comprehensive
framework for analyzing Indonesian food and beverages can be created by combining various machine
learning techniques, such as KNN, Decision Trees, SVM, Random Forest, and MLP. Hybrid models and
ensemble methods leverage the strengths of each classifier, overcoming their respective limitations
and achieving a balanced trade-off between interpretability and accuracy [8]. This integration advances
food informatics and supports data-driven public health policies in Indonesia.

The incorporation of machine learning into nutrition studies is in line with recent advances in
intelligent food control systems. Multisource data mining techniques can be adapted to classify and
manage vast nutrition databases covering a wide variety of foods, including Indonesian specialties [9]. This
approach not only improves food classification but also facilitates real-time monitoring and prediction of
nutritional outcomes, paving the way for future research. Unlike previous studies that focused on
individual models, this research contributes to the growing body of knowledge by providing a systematic
approach to classifying Indonesian foods and beverages using multiple machine-learning techniques. By
comparing several algorithms on a comprehensive food dataset, this research offers new insights into
model performance and practical applications, such as better diet assessment and customized nutrition
recommendations for Indonesians [10].

2. Literature Review

The main objective of this research is to classify Indonesian food and beverages based on their
nutritional content, specifically focusing on calories, protein, fat, and carbohydrates. By using various
machine learning techniques, including K-Nearest Neighbors, Decision Trees, Support Vector Machines,
Random Forest, and Multilayer Perceptron (MLP), this research aims to improve the accuracy of diet
classification. This classification not only provides insights into the nutritional profiles of local ingredients
but also supports the development of data-driven diet recommendations tailored to the Indonesian
population.

Previous research has been conducted by Asmara et al. (2020) [11] with the main objective being the
creation of a recommendation system for Herbalife Nutrition products made possible through the
utilization of Mamdani Fuzzy Logic. This research is capable of effectively managing uncertainty in
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decision-making by utilizing fuzzy logic, which ultimately results in increased customer satisfaction and an
optimized recommendation process. Another research was conducted by Sulistiani et al. (2020) [12]. The
main objective of this research is to determine the optimal nutrition pattern that most supports toddler
growth. PSO is used to tackle difficult optimization challenges, making this achievable. As a result of these
findings, the practical application of PSO in the process of refining diet planning. Research conducted by
Rong (2024) [13] presents a study that optimizes student diet recipes by utilizing the Entropy Weight
TOPSIS method along with the Simulated Annealing Algorithm. The objective of this study is to investigate
and classify various dietary options. The methods used successfully optimized optimization across various
population groups, as evidenced by the fact that the combination of these methods was effective in
determining which recipes were most suitable. In addition, Siagian et al. (2024) [14] developed a food
menu recommendation system specifically tailored to meet the dietary needs of the Indonesian
population. This system can integrate cultural food practices and existing local nutritional standards.

In this paper, we investigate the classification of Indonesian food and beverages based on their
nutritional profiles using machine learning techniques. The selection of these models is justified by their
ability to accurately classify various types of food by capturing the interactions between essential
macronutrients: calories, protein, fat, and carbohydrates. Machine learning models including K-Nearest
Neighbors, Decision Trees, Support Vector Machines, Random Forest, and Multilayer Perceptron can
process large datasets with many variables, offering a more scalable and efficient method for nutritional
analysis compared to conventional manual categorization techniques. A standard scaler for data
normalization helps improve classification accuracy, which is crucial for handling challenging and varied
datasets. This research provides a methodical and data-driven approach to classifying Indonesian food,
offering valuable information that can serve as a guide for appropriate dietary recommendations and
guidelines for the Indonesian population. This knowledge will help improve public health policies and
create more tailored nutrition plans.

3. Method

To enable effective classification, this study handled and investigated the Indonesian food and
beverage dataset including nutritional values such as calories, protein, fat, and carbohydrates. Food
type classification using five distinct machine learning models: K-Nearest Neighbors (KNN), Decision
Trees, Support Vector Machine (SVM), Random Forest, and Multilayer Perceptron (MLP). Every model
was chosen for its particular benefits in problems of classification. SVM excels in high-dimensional
spaces, for instance, while Random Forest resists overfitting in big datasets. Its performance was
assessed using the evaluation matrix including precision, accuracy, recall, and F1 score following
hyperparameter modification using randomized search to acquire the best configurations for every
model. Figure 1 gives a general picture of the methodical approach applied in this study, so summarizing
the whole technique.

Pre-Processing

Data Cleaning Feature Scaling

—
Start
Labeling
Import Data
Modeling Machine Learning

‘ MLP |

I

Decision Tree Random Forest

Exploratory Data Analysis
(EDA)

Figure 1. Flowchart of the research method
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3.1. Import Data

This study uses nutritional information from Indonesian foods and drink nutrition dataset [15]. With
information on calories, proteins, fats, and carbohydrates, the 1,346 entries in the dataset reflect
different types of foods. Every entry in the dataset also features a link to an image of the item and a
distinct identity. Preprocessing techniques are used to solve data quality concerns including handling
missing values and normalizing the numerical nutritional data, so preparing this dataset for machine
learning classification. Table 1 shows a summary of the Indonesian food and drink nutrition dataset.

Table 1. Table Summary of Indonesian Food and Drink Nutrition Dataset

id calories proteins fat carbohydrate name image

1 280.0 9.2 28.4 0.0 Abon https://imgcdn.medkomtek.co
m/PbrY9X3ignQ8sVuj...

2 513.0 23.7 37.9 21.3 Abon haruwan https://img-
global.cpcdn.com/recipes/cbf3
30fbd...

3 0.0 0.0 0.2 0.0 Agar-agar https://res.cloudinary.com/dk0
z4ums3/image/upl...

4 45.0 1.1 0.4 10.8 Akar tonjong https://images.tokopedia.net/i

segar mg/cache/200-squ...

5 37.0 4.4 0.5 3.8 Aletoge segar https://nilaigizi.com/assets/ima
ges/produk/pro...

1346 52.0 3.3 2.5 4.0 Yoghurt https://d1vbn70lmnlnge.cloud

front.net/prod/wp-...

3.2. Exploratory Data Analysis

Exploratory data analysis (EDA) is an important first step in research, as it helps provide closer
knowledge of the structure and features of a dataset. Particularly in clinical settings, Carnevale et al
[10] showed how EDA supports feature selection in challenging data sets. Their work on optimizing
pediatric laparoscopy shows how EDA can reveal important trends, anomalies, and relationships in the
data, thus guiding improved feature selection for better model results. Similarly, Wang et al. [16] used
EDA techniques for geoexploration data, thus further highlighting the importance of EDA in uncovering
the underlying data structure and therefore enabling discovery in large multidimensional datasets.
These cases show how the role of EDA in feature identification precisely shapes data-driven outcomes
in many scientific domains.

EDA is a crucial step in the research process, particularly in the context of dietary classification. EDA
involves analyzing datasets to summarize their main characteristics, often using visual methods. In this
study, EDA played a significant role in feature selection by helping to identify important trends,
anomalies, and relationships within the nutritional data of Indonesian foods. By employing EDA
techniques, researchers were able to uncover the underlying structure of the dataset, which informed
the selection of relevant features for the machine learning models. This process not only enhanced the
accuracy of the models but also ensured that the selected features were representative of the
nutritional characteristics of the foods being classified.

3.3. Data Preprocessing

The preprocessing stage of this study was crucial to ensure that the data was clean, consistent, and
ready for classification. This stage involved multiple steps, including data cleaning, feature scaling, and
labeling, which together aimed to improve the accuracy and reliability of the machine learning models
used to classify Indonesian foods. Each preprocessing step was selected and executed based on the
unique structure and characteristics of the dataset, and it helped to standardize and prepare the data
for effective analysis. Table 2 shows the description for each preprocessing step.
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Table 2. Table Data Preprocessing for Indonesian Food and Drink Nutrition Dataset

Step Description Purpose Method/Tool
Data Cleaning [17] Delete rows with missing To ensure that each entry is Pandas: dropna()
values or unused data complete and reduce bias,

preventing potential errors and
inconsistencies during model

training.
Feature Scaling [18] Normalize variables such as  To prevent features with larger Scikit-learn:
calories, protein, fat, and data from dominating the Standardscaler()
carbohydrates on a classification
comparable scale
Labeling [19] Set target variables based To categorize each food based Custom function:
on the dominant on nutrients, facilitating labeling_foods()
macronutrients in each macronutrient analysis and
food: High-Protein, High- creating multiclass target
Fat, or High- Carbohydrate. variables for supervised
learning.

3.4. Modeling Machine Learning

In this study, five distinct machine-learning models were selected for their unique strengths in
handling classification tasks related to Indonesian foods and beverages. Each model was implemented
with careful consideration of its hyperparameters to optimize performance. Overall, the methodology
employed a systematic approach to model selection and hyperparameter optimization, ensuring that
each machine learning model was tailored to effectively classify the diverse Indonesian food dataset
based on nutritional profiles.

3.4.1. KNN

K-Nearest Neighbors (KNN) classifier's training process starts with careful hyperparameter selection
and preparation meant to maximize its predictive performance. RandomizedSearchCV helps one to
accomplish this using a quick search over a specified range of hyperparameter values. The KNN model's
fundamental hyperparameters are distance metric (metric), weighting scheme (weights), and number
of neighbors (n_neighbors). Defining these boundaries inside a search grid helps the model to be
evaluated with several combinations, so improving its capacity to generalize to fresh data. 5-fold cross-
validation guarantees that every combination is tested in several subsets of the training data, so
offering a strong estimate of the performance of the model. Following the random search, the model
chooses the hyperparameters producing the best cross-validation accuracy. These ideal values then are
used to train the last model on the whole training set, so ensuring that it makes use of the best
configuration discovered during the search. This careful approach not only optimizes the KNN classifier
to fit the particular features of the dataset but also reduces overfitting risk. Automating
hyperparameter tuning with RandomizedSearchCV helps the model training page to emphasize the
need to use cross-validation and randomized searches to produce a dependable, strong predictive
model. The KNN classifier was chosen for its simplicity and effectiveness in classification tasks [20]. The
training process involved hyperparameter tuning using RandomizedSearchCV, which allowed for a
quick search over various hyperparameter values, including the distance metric, weighting scheme, and
the number of neighbors. This method ensures that the model is well-suited to the dataset's
characteristics, reducing the risk of overfitting while enhancing generalization to new data. The model's
performance was validated through 5-fold cross-validation, ensuring robust accuracy estimates.

3.4.2. Decision Tree

The decision tree model's training is methodically hyperparameter-tuned to maximize predictive
accuracy. RandomizedSearchCV is applied in this process to effectively investigate a variety of
hyperparameter settings. Combining 5-fold cross-valuation with a randomized search across these
parameter values helps the model find the best settings that maximize high accuracy while preserving
generalizing capability to new data. Utilizing cross-validation, every set of hyperparameters is tested
for consistency over several data splits, so enhancing the model's dependability. From the
hyperparameter identification, re-training the Decision Tree classifier on the entire training set using
the optimal configuration follows. This retraining phase ensures that the model catches all accessible
training data patterns by using the tuned parameters to avoid problems including underfitting and
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overfitting. Utilizing RandomizedSearchCV, automating the search for the ideal model configuration
enables this process to highlight a successful approach to generate and improve decision trees, thus
generating a more accurate and stronger predictive model [21]. Although not detailed extensively in
the contexts, Decision Trees were also part of the classification process, providing a straightforward
method for interpreting the classification results based on the nutritional features of the foods.

3.4.3. Support Vector Machine (SVM)

The support Vector Machine (SVM) classifier's training process consists of hyperparameter fine-
tuning to reach the best performance. This method investigates a predefined set of hyperparameters
using RandomizedSearchCV, including the regularization parameter C, several forms of the kernel
(linear, rbf, poly), the kernel coefficient gamma, and the polyn degree (specific to the poly kernel).
Starting the SVM model using random states helps to produce consistent results. RandomizedSearchCV
tests 10 random combinations of these hyperparameters over the search using 5-fold cross-validation
to identify the configuration optimizing model accuracy. This cross-valuation approach helps to avoid
overfitting by enabling the guarantee of consistent model performance over several data splits. Once
discovered, the best hyperparameters print alongside the maximum cross-validation accuracy. The last
SVM model is then trained on these optimal conditions using the complete training dataset. This last
training phase uses the perfect configuration to increase the SVM's capacity for effective generalizing
to new data. This methodical approach of hyperparameter tuning with RandomizedSearchCV shows
how efficiently data scientists could maximize SVM models, thus improving prediction accuracy and
resilience. SVM was selected for its ability to excel in high-dimensional spaces. The model was
configured with a linear kernel, and hyperparameters such as gamma, degree, and C values were
optimized [22]. The SVM model achieved high accuracy demonstrating its effectiveness in accurately
identifying true instances within the dataset.

3.4.4. Random Forest

RandomizedSearchCV is used in the model training process for a Random Forest classifier to
maximize hyperparameters and improve the model's predictive capacity. A strong ensemble learning
technique, Random Forest gains much from careful hyperparameter tuning to balance bias and
variance. RandomizedSearchCV guarantees that a large spectrum of model configurations is evaluated
effectively by setting these parameters and running 10 iterations of randomized testing using 5-fold
cross-valuation. This cross-valuation method aids in the identification of the most optimal
hyperparameter combination maximizing accuracy and encouraging generalizability. Once the random
search is over, the hyperparameters with the highest performance are printed together with their
matching cross-valuation accuracy. The last model is then re-trained on the whole training set using
these ideal hyperparameters, arming it to generate strong predictions. Driven by the power of
RandomizedSearchCV, this all-encompassing training method underlines how methodical
hyperparameter tuning can significantly improve model performance, so ensuring that the Random
Forest classifier generates consistent and accurate results in many data settings. This ensemble learning
method was included for its robustness against overfitting, especially in large datasets [23]. The model's
hyperparameters, such as the number of estimators and maximum depth, were fine-tuned to enhance
its predictive performance.

3.4.5. Multilayer Perceptron (MLP)

Optimizing several hyperparameters helps a Multi-Layer Perceptron (MLP) classifier to enhance its
performance. Randomized Search CV is applied in this process to do an extensive search across a grid
of possible hyperparameters. These comprise the hidden layer sizes, the activation function applied
inside the hidden layers, and the weight update optimization technique (solver). Furthermore, taken
under consideration are the learning rate schedule (learning_rate) which regulates how the learning
rate changes during training, and the regularization term (alpha), which penalizes significant weights
and helps prevent overfitting. Defining the maximum number of training iterations, the max_iter value
guarantees sufficient chances for convergence of the model. Using RandomizedSearchCV which
executes 10 randomized iterations under 5-fold cross-validation the optimal hyperparameter
combination is chosen depending on accuracy. This method improves the predictive power and
dependability of the model by helping to find configurations that generalize well in many data splits
[24]. Re-training the final MLP model on the whole training set with the ideal parameters helps to attain
the best possible predictive performance. The MLP model was implemented to capture complex,
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nonlinear relationships within the data. Hyperparameters such as the learning rate schedule and
regularization term were optimized using RandomizedSearchCV, which executed multiple iterations
under cross-validation. This approach ensured that the final model was trained on the entire dataset
with the best-found parameters.

3.5. Evaluation

The evaluation model uses the confusion metric, with the following composition, F1 score,
precision, recall, and precision. The focus of this performance analysis is on the accuracy produced by
the proposed model. When analyzing the results using a confusion matrix, there is a mathematical
formula for all metrics used.

Accuracy measures the proportion of correctly predicted instances out of the total number of
predictions. It is useful for evaluating the overall performance of a model but may not be reliable for
imbalanced datasets [25]. The formula of accuracy shown in equation (1).

TP+TN

A - X 100
CoUracy = rp Y FP+ FN + TN

(1)

Precision is the ratio of true positive predictions to the total predicted positives. It reflects the
relevance of positive predictions and is crucial in scenarios where false positives have high costs, such
as spam detection [25]. The formula of precision shown in equation (2).

TP

p . . -
recision TP + FP

(2)

Recall, also known as sensitivity, measures the proportion of actual positives that are correctly
identified by the model. It is important in scenarios where missing a positive instance (false negative)
carries significant consequences, such as disease detection [25]. The formula of recall shown in
equation (3).

TP

Recall = m

(3)

The F1 score is the harmonic mean of precision and recall, providing a balanced measure when both
metrics are crucial. It is particularly effective for imbalanced datasets [25]. The formula of the F1 score
is shown in equation (4).

(precision X recall)

F1Score =2 X —
(precision + recall)

(4)

Description:

TN (True Negative): True data that is categorized as negative
TP (True Positive): True data that is categorized as positive.
FP (False Positive): False data that is categorized as positive
FN (False Negative): False data that is categorized as negative
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4. Results and Discussion
4.1. Results of Exploratory Data Analysis (EDA)

Distribution of Caleries per 100g
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Figure 2. Distribution of Calories

Figure 2 illustrates the distribution of calories per 100 grams across a dataset, providing insights into
the caloric density of various food items. The x-axis represents the calorie values, while the y-axis
indicates the frequency of items within a particular calorie range. A smooth density curve is
superimposed over the histogram to highlight the overall shape and distribution of the data. The
distribution appears to be right-skewed, with a majority of items concentrated in the lower calorie
ranges, particularly between 0 and 200 calories. This suggests that most food items in the dataset are
low in caloric density. The presence of secondary peaks around 400 calories per 100 grams indicates a
potential subcategory of food items with higher calorie content. Beyond 600 calories, the frequency
sharply declines, indicating that high-calorie items are relatively rare in the dataset. This distribution
could be useful for researchers studying dietary patterns or analyzing food choices, as it provides an
understanding of the prevalence of high- and low-calorie foods, helping to inform nutritional guidelines
and public health recommendations.
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Figure 3. Correlation Matrix

Figure 3 visualizes the relationships between different nutritional features: calories, proteins, fat,
and carbohydrates. The color scale represents the strength and direction of the correlation, ranging
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from -1 (strong negative correlation) to 1 (strong positive correlation). Red tones indicate positive
correlations, while blue tones indicate negative or weak correlations. For instance, calories have a
strong positive correlation with fat (0.74) and a moderate correlation with carbohydrates (0.45),
suggesting that foods higher in calories are often rich in fats and, to a lesser extent, carbohydrates.
Proteins, however, show weaker correlations with other features. There is a moderate positive
correlation between proteins and calories (0.35) and a weak positive relationship with fat (0.23), while
the correlation with carbohydrates is slightly negative (-0.13). This indicates that protein content does
not strongly align with other macronutrient levels in the dataset. Such findings can aid researchers and
dietitians in understanding how macronutrients contribute to the caloric density of foods and their
interdependence, providing valuable insights for dietary planning and nutritional analysis.

Calories vs. Proteins Calories vs. Fat Calories vs. Carbohydrate
label . 100 label P . label
807 & High-fat ® High-Fat 600 ® High-Fat
® High-Carbohydrate . ® High-Carbohydrate . ® High-Carbohydrate
«  High-Protein . ao © MHghProtein . s High-Protein

proteins
5
carbohydrate

600 800 0 200 400 600 800 0 200 400 600 800
calories calories calories

Figure 4. Scatter Plot Relantionship

200

This set of scatter plots displays the relationships between calories and three nutritional
components: proteins, fat, and carbohydrates, with points color-coded by category (High-Fat, High-
Carbohydrate, and High-Protein). The first plot (Calories vs. Proteins) indicates that higher-protein
foods generally span a range of calorie values, with many high-protein items (green points) clustering
in lower to moderate calorie ranges. This suggests that high-protein foods may not always be calorie-
dense, contrasting with other macronutrient categories. In the second plot (Calories vs. Fat), there is a
strong positive relationship, as expected, between calories and fat, with high-fat items (blue points)
dominating at higher calorie levels. The third plot (Calories vs. Carbohydrates) shows that high-
carbohydrate items (orange points) are widely distributed, but their calorie contribution does not
follow as clear a pattern as fat. These visualizations provide insights into how the balance of
macronutrients contributes to the caloric content of food, helping in dietary classification and
nutritional profiling for different diet categories.
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Figure 5. Top 10 Foods with Highest Calories
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This bar chart illustrates the top 10 foods with the highest calorie content per 100 grams. The food
items listed are predominantly oil-based or fat-rich products, which explains their significantly high
caloric density. Foods like "Opak Singkong," "Minyak lkan," and various types of oils (e.g., palm oil,
sesame oil, and olive oil) feature prominently in this list. These items surpass 800 calories per 100
grams, underscoring their concentrated energy value, a characteristic typical of fats and oils. The
presence of "Lemak Babi" (pork fat) and "Minyak Hati Hiu (Eulamia)" further reinforces this trend, as
animal fats are also known for their high energy content. From a research perspective, such data is
critical in dietary studies, especially when analyzing caloric intake patterns or assessing energy-dense
food consumption's role in public health. For example, while these foods are energy-rich, excessive
consumption could lead to health issues like obesity or cardiovascular diseases if not balanced with
nutrient-dense, lower-calorie foods. This chart could also inform food policy or guide recommendations
for calorie-conscious individuals, emphasizing the importance of moderation when including these
high-calorie foods in daily diets.
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Figure 6. Word Cloud Food-Related Words

This image is a word cloud that visually represents the frequency of various food-related words.
Larger words, such as "segar" (fresh), "goreng" (fried), "masakan" (cooking/dish), "Daun" (leaf), and
"lkan" (fish), indicate higher usage or relevance within the dataset. The prevalence of these terms
suggests a focus on fresh ingredients, traditional cooking methods, and common staples like fish,
leaves, and fried dishes in the context being analyzed. This visual tool effectively highlights key themes
and patterns in the associated text or data. From a research perspective, word clouds like this provide
an intuitive summary of dominant terms, making it easier to grasp the central ideas in qualitative data.
For instance, the emphasis on "segar" implies a strong cultural or dietary preference for fresh
ingredients, while "goreng" indicates that frying is a prevalent cooking method. This type of analysis
can be valuable for culinary studies, consumer behavior research, or even public health planning, as it
points to dietary habits and priorities in a given community or dataset.

4.2. Results of Modeling Machine Learning

a. KNN
Table 3. Table Result of KNN Model Training
Precision Recall Fl-score Support
High-Carbohydrate 0.98 0.97 0.98 186
High-Fat 0.92 0.92 0.92 24
High-Protein 0.92 0.93 0.93 60
Accuracy 0.96 270
Macro avg 0.94 0.94 0.94 270
Weighted avg 0.96 0.96 0.96 270
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On a dataset comprising three dietary categories High-Carbohydrate, High-Fat, and High-Protein,
the performance measures of a KNN model show an accuracy of 96%. The model thus accurately
categorized 96% of every example in the dataset. With a precision of 0.98, the model for the High-
Carbohydrates class indicates that 98% of the cases projected were accurate. With a similar high recall
for this class, 97% of the actual High-Carbohydrates were accurately found. At 0.98, the F1-score which
strikes a mix between accuracy and recall also shows great performance for this class. With a precision
of 0.92 for the High-Fat class, 92% of the forecasts for that class were accurate. With a recall of 0.92,
the model identified 92% of the real High-Fat cases.

With a 0.92 F1-score for High-Fat, this class's balance of recall and precision is likewise good. The
model attained a precision of 0.92 for the High-Protein class, so meaning 92% of cases predicted as
High-Protein were accurate. At 0.93, the recall is somewhat higher; hence, 93% of the actual High-
Protein cases were precisely identified. With an F1-score of 0.93, High-Protein suggests dependable
performance for this class. With an average performance across the three categories, the model's
precision, recall, and Fl-score are each 0.94 looking at the macro-average across all classes. With
precision, recall, and F1 score all at 0.96 the weighted average which considers class support is
somewhat higher. With somewhat better performance in the more common High-Carbohydrates class,
this consistency reflects the strong classification ability of the model over many dietary classes.

b. Decision Tree

Table 4. Table Result of the Decision Tree Model Training

Precision Recall Fl-score Support
High-Carbohydrate 0.97 0.96 0.96 186
High-Fat 0.88 0.88 0.88 24
High-Protein 0.89 0.90 0.89 60
Accuracy 0.94 270
Macro avg 0.91 0.91 0.91 270
Weighted avg 0.94 0.94 0.94 270

On a dietary dataset spanning three categories High-Carbohydrate, High-Fat, and High-Protein the
performance measures of a Decision Tree model show an accuracy of 94%. The model thus correctly
categorized 94% of all the data set instances. With a precision of 0.97, the model for the High-
Carbohydrates class indicates that 97% of the instances projected as such were accurate. With a 0.96
recall for this class, 96% of real high-carbohydrate cases were correctly found. With an F1 score of 0.96,
which strikes a mix between recall and accuracy, this class performs rather well. With a precision of
0.88, the model in the High-Fat class found that 88% of the forecasts for High-Fat were accurate. With
a recall of 0.88, the model precisely identified 88% of real high-fat cases. With an F1 score of 0.88, High-
Fat reflects a balanced class performance.

With a precision of 0.89, the High-Protein class's 89% of the instances projected were accurate. At
0.90, the recall is somewhat higher, meaning that 90% of real High-Protein cases were correctly found.
With an Fl-score of 0.89, High-Protein shows consistent identification of this class. With the model's
precision, recall, and F1 score each 0.91, the average performance in the three categories and the
macro-average in all classes show the same. At 0.94, the weighted average which considers the varying
number of cases in every class showcases precision, recall, and the F1 score, quite near to the general
accuracy. Particularly in the more frequent High-Carbohydrate class, this consistency among measures
reflects the balanced and dependable performance of the model over the dietary categories.

C. Support Vector Machine

Table 5. Table Result of SVM Model Training

Precision Recall Fl-score Support
High-Carbohydrate 0.99 0.98 0.99 186
High-Fat 0.96 1.00 0.98 24
High-Protein 0.97 0.98 0.98 60
Accuracy 0.99 270
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Macro avg 0.97 0.99 0.98 270
Weighted avg 0.99 0.99 0.99 270

On a dietary classification dataset comprising the High-Carbohydrate, High-Fat, and High-Protein
categories, the performance measures of a Support Vector Machine model show an overall accuracy of
99%. The model thus appropriately categorized 99% of all the data points. The model attained a
precision of 0.99 for the High-Carbohydrates class, meaning that 99% of the cases projected as High-
Carbohydrates were accurate. With a 0.98 recall for this class, 98% of the real high-carbohydrate cases
were correctly found. Reflecting great performance in this class, the F1 score balances precision and
recall and is 0.99. With a 0.96 precision, the model indicates that 96% of High-Fat class predictions were
accurate. With a 1.00 recall, the model accurately recognized 100% of the real High-Fat events. With
an F1 score of 0.98, the High-Fat class shows strong performance.

With a precision of 0.97, the model in the High-Protein class found that 97% of the cases forecasted
were accurate. At 0.98, the recall is rather higher, meaning that 98% of real High-Protein cases were
accurately found. With an Fl-score of 0.98, High-Protein shows a great degree of accuracy in class
identification. With the macro average across all classes, the model's precision, recall, and F1-score are
0.97, 0.99, and 0.98, respectively, so indicating the average performance over the three categories.
With consideration for the varying number of events in every class, the weighted average reveals
precision, recall, and Fl-score all at 0.99, quite closely matching general accuracy. This consistent
performance over all classes and measures reflects the dependability and efficacy of the model in
classifying dietary categories with a high degree of accuracy.

d. Random Forest

Table 6. Table Result of Random Forest Model Training

Precision Recall F1-score Support
High-Carbohydrate 0.99 0.97 0.98 186
High-Fat 0.96 0.92 0.94 24
High-Protein 0.89 0.98 0.94 60
Accuracy 0.97 270
Macro avg 0.95 0.96 0.95 270
Weighted avg 0.97 0.97 0.97 270

On a dietary dataset comprising High-Carbohydrate, High-Fat, and High-Protein categories, the
performance measures of a Random Forest model show an overall accuracy of 97%. The model thus
correctly categorized 97% of every example in the dataset. With a precision of 0.99, the model for the
High-Carbohydrates class found that 99% of the cases forecasted were accurate. With a 0.97 recall for
this class, 97% of real high-carbohydrate cases were precisely found. Reflecting great performance for
this class, the F1-score balances accuracy and recall and is 0.98. With a precision of 0.96, the model in
the High-Fat class makes 96% of all the predictions accurate. At 0.92, the recall is somewhat lower,
meaning that 92% of the real High-Fat cases were correctly found. With an F1-score of 0.94, High-Fat
shows good but somewhat less performance than High-Carbohydrates class.

With a precision of 0.89 for the High-Protein class, the model correctly 89% of the cases projected
as High-Protein. At 0.98 the recall is higher, indicating that 98% of real High-Protein cases were correctly
identified. Though accuracy is rather lower, the F1-score for High-Protein is 0.94, indicating dependable
performance in defining this class. With the macro average across all classes, the model's accuracy,
recall, and Fl-score are 0.95, 0.96, and 0.95, respectively, so reflecting the average performance over
the three categories. Closely matching the general accuracy, the weighted average which considers the
varying number of instances in every class shows the precision, recall, and F1 score all at 0.97. This great
consistency in the measures reflects the dependable and balanced performance of the model at all
dietary levels.
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e. Multilayer Perceptron (MLP)

Table 7. Table Result of MLP Model Training

Precision Recall Fl1-score Support
High-Carbohydrate 0.99 0.98 0.99 186
High-Fat 0.96 0.96 0.96 24
High-Protein 0.95 0.98 0.97 60
Accuracy 0.98 270
Macro avg 0.97 0.98 0.97 270
Weighted avg 0.98 0.98 0.98 270

On a three-category dietary dataset, High-Carbohydrate, High-Fat, and High-Protein the
performance measures of an MLP model show an overall accuracy of 98%. This shows that in the whole
dataset, the model accurately categorized 98% of all events. With a precision of 0.99, the model found
that 99% of the High-Carbohydrate class instances projected were accurate. With a recall for this class
of 0.98, 98% of real High-Carbohydrates cases were precisely detected. Reflecting extraordinary
performance in this category, the F1-score which balances precision and recall is 0.99. With a precision
of 0.96, the model in the High-Fat class found that 96% of the High-Fat instances projected were
accurate. With a recall of 0.96, which denotes that 96% of real High-Fat cases were precisely found.
With a 0.96 F1-score for High-Fat, this class exhibits constant and dependable performance.

With a precision of 0.95, the model forecasts 95% of the High-Protein class events to be accurate.
At 0.98, the recall is rather higher, indicating that 98% of real High-Protein cases were correctly found.
With a 0.97 F1-score for High-Protein, this category's performance is likewise rather strong. Concerning
the three categories, the macro-average in all classes reveals that the precision, recall, and F1 score of
the model are 0.97, 0.98, and 0.97, respectively. At 0.98, the weighted average which takes into account
the different number of events in every class showcases the precision, recall, and F1 score, so closely
matching the general accuracy. This great consistency among several criteria emphasizes the balanced
and efficient performance of the model in classifying all kinds of diets.

4.3. Discussion

The discussion that will be discussed is a comparison between research models that have been
trained using data. Then, the best model is used as a proposed model. The comparison of research
models can be seen in Table 7.

Table 8. Table Model Evaluation Comparison

Proposed Model Best Hyperparameter Accuracy (%) Precision (%) Recall (%) F1-Score (%)
KNN weights: uniform, 96.19 94 94 94
n_neighbors: 5, metric:
manhattan
Decision Tree min_samples_split: 10, 94.89 91 91 91

min_samples_leaf: 1,
max_features: None,
max_depth: 50, criterion: gini

SVM kernel: linear, 99.16 97 99 98
gamma: 1,
degree: 2,
C: 100
Random Forest n_estimators: 100, 96.74 95 96 95

min_samples_split: 5,
min_samples_leaf: 1,
max_features: log2,
max_depth: 20

MLP solver: adam, 98.04 97 98 97
max_iter: 1000, learning_rate:
adaptive, hidden_layer_sizes:
(50,), alpha: 0.0001,
activation: logistic

35



The Support Vector Machine (SVM) model achieved the highest accuracy at 99.16%, with a linear
kernel, gamma set to 1, degree at 2, and a C value of 100. This model also had the highest recall (99%)
and F1 score (98%), reflecting its superior ability to accurately identify true instances. The multi-layer
perceptron (MLP), configured with an adaptive learning rate and logistic activation function, also
performed well, reaching an accuracy of 98.04%, with precision and F1 score at 97% and recall at 98%.
Other models, including Random Forest and XGBoost, achieved accuracies above 96%, showing reliable
performance with optimized parameters such as n_estimators, max_depth, and sampling parameters.
This comparison highlights SVM and MLP as the most effective models for achieving high classification
accuracy in this study, followed closely by Random Forest and XGBoost.

The results of this study have significant implications for dietary recommendations, particularly in
the context of Indonesian cuisine. The high accuracy rates achieved by the machine learning models,
especially the Support Vector Machine indicate that these models can effectively classify foods based
on their macronutrient content, such as high carbohydrates, high fats, and high proteins. This
classification not only aids in understanding the nutritional composition of various foods but also
supports the creation of data-driven dietary guidelines. The findings suggest that individuals can make
more informed dietary choices based on the classification results, which can lead to improved health
outcomes. Furthermore, the study highlights the potential for machine learning to bridge the gap
between traditional dietary research and modern technological innovations. Overall, the integration of
EDA and machine learning in this research underscores the importance of data-driven approaches in
developing effective dietary recommendations that are both practical and scientifically grounded.

5. Conclusion

This study opens up new avenues for dietary classification and machine learning research.
Expanding the model to include more diets and foods is promising. Researchers can improve the
model's robustness and applicability across populations and diets by using more datasets. Future
studies could also use mobile apps to collect real-time data for continuous dietary monitoring and
personalized nutrition recommendations. Future research should examine how preprocessing methods
affect model performance. This study normalized nutritional features using standard scaling, but
feature engineering or dimensionality reduction may improve classification accuracy. Advanced
machine learning methods like deep learning could also be tested for dietary classification. Future
research could examine how dietary classifications affect health. Data-driven dietary recommendations
can be tested by longitudinal studies that track health metrics and diet. This could lead to public health-
focused nutrition interventions. Finally, nutritionists and healthcare professionals must collaborate to
turn these findings into dietary guidelines. Engaging nutrition stakeholders can ensure that models and
recommendations are scientifically sound, culturally relevant, and accessible to the target population.
These future directions show that machine learning and nutrition science can continue to innovate,
improving diets and health.
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