Decision Support System for Program Indonesia Pintar Recipients Using the Fuzzy Multi-Criteria Decision-Making Method

Main Article Content

Abdul Hamid
Muhammad Sandi Rais
Muhammad Idris Rois
Salamun Salamun
Yonhendri Yonhendri
Ahmad Zulfan
Lasmi Oyong

Abstract

Program Indonesia Pintar (PIP) is the development of Bantuan Siswa Miskin (BSM) program, which covers students from the learning stages of SD or MI, SMP or MTs, SMA or Sekolah Menengah Kejuruan (SMK), the PIP Program is a National Program that aims to eliminate barriers to poor students participating in studying by helping poor students get access to appropriate learning services, avoiding dropping out of school, attracting poor students to return to study, helping students fulfill their desires in upgrading activities. Through the Program Indonesia Pintar (PIP), school-age children from poor households or families can continue to study, do not drop out of school. No recipients are on the wrong target for assistance from the Smart Indonesia Program at SMP Negri 39 Pekanbaru City. The method used in the decision support system is Fuzzy Multi-Criteria Decision Making (FMCDM) which assesses alternative determinants so that they can be used in policy analysis in decision-making. The results of this decision support will help decide the best choice of several substitutes based on the selected criteria.

Article Details

How to Cite
Hamid, A., Rais, M. S. ., Rois, M. I. ., Salamun, S., Yonhendri, Y., Zulfan, A. ., & Oyong, L. . (2023). Decision Support System for Program Indonesia Pintar Recipients Using the Fuzzy Multi-Criteria Decision-Making Method. Journal of Information System Exploration and Research, 1(2). https://doi.org/10.52465/joiser.v1i2.157
Section
Articles

References

S. French, “Reflections on 50 Years of MCDM: Issues and Future Research Needs,” EURO J. Decis. Process., vol. 11, no. November 2022, p. 100030, 2023, doi: 10.1016/j.ejdp.2023.100030.

H. J. Pasman, W. J. Rogers, and S. W. Behie, “Selecting a method/tool for risk-based decision making in complex situations,” J. Loss Prev. Process Ind., vol. 74, no. March 2021, p. 104669, 2022, doi: 10.1016/j.jlp.2021.104669.

G. H. de Paula Vidal, R. G. G. Caiado, L. F. Scavarda, P. Ivson, and J. A. Garza-Reyes, “Decision support framework for inventory management combining fuzzy multicriteria methods, genetic algorithm, and artificial neural network,” Comput. Ind. Eng., vol. 174, no. October, 2022, doi: 10.1016/j.cie.2022.108777.

R. G. G. Caiado, L. F. Scavarda, L. O. Gavião, P. Ivson, D. L. de M. Nascimento, and J. A. Garza-Reyes, “A fuzzy rule-based industry 4.0 maturity model for operations and supply chain management,” Int. J. Prod. Econ., vol. 231, no. July 2020, 2021, doi: 10.1016/j.ijpe.2020.107883.

P. Pampouktsi et al., “Techniques of Applied Machine Learning Being Utilized for the Purpose of Selecting and Placing Human Resources within the Public Sector,” J. Inf. Syst. Explor. Res., vol. 1, no. 1, pp. 1–16, 2022, doi: 10.52465/joiser.v1i1.91.

Y. Yun, D. Ma, and M. Yang, “Human–computer interaction-based Decision Support System with Applications in Data Mining,” Futur. Gener. Comput. Syst., vol. 114, pp. 285–289, 2021, doi: 10.1016/j.future.2020.07.048.

Y. Zhang, H. Huang, L. X. Yang, Y. Xiang, and M. Li, “Serious challenges and potential solutions for the industrial internet of things with edge intelligence,” IEEE Netw., vol. 33, no. 5, pp. 41–45, 2019, doi: 10.1109/MNET.001.1800478.

P. Riliandini, E. N. Dianti, S. R. Hidayah, D. Ananda, and A. Pertiwi, “Improved logistics service quality for goods quality delivery services of companies using analytical hierarchy process,” J. Soft Comput. Explor., vol. 2, no. 1, 2021, doi: 10.52465/joscex.v2i1.21.

S. Zakeri, P. Chatterjee, N. Cheikhrouhou, and D. Konstantas, “Ranking based on optimal points and win-loss-draw multi-criteria decision-making with application to supplier evaluation problem,” Expert Syst. Appl., vol. 191, no. November 2020, p. 116258, 2022, doi: 10.1016/j.eswa.2021.116258.

J. M. Sánchez-Lozano, A. Moya, and J. M. Rodríguez-Mozos, “A fuzzy Multi-Criteria Decision Making approach for Exo-Planetary Habitability,” Astron. Comput., vol. 36, p. 100471, 2021, doi: 10.1016/j.ascom.2021.100471.

J. C. Pena, G. Nápoles, and Y. Salgueiro, “Normalization method for quantitative and qualitative attributes in multiple attribute decision-making problems,” Expert Syst. Appl., vol. 198, no. November 2021, 2022, doi: 10.1016/j.eswa.2022.116821.

A. Mohamed, F. Business, A. Alden, A. Mohamed, S. Al Mohamed, and M. Zino, “Application of fuzzy multicriteria decision ‑ making model in selecting pandemic hospital site,” Futur. Bus. J., 2023, doi: 10.1186/s43093-023-00185-5.

F. Sitorus, J. J. Cilliers, and P. R. Brito-Parada, “Multi-criteria decision making for the choice problem in mining and mineral processing: Applications and trends,” Expert Syst. Appl., vol. 121, pp. 393–417, 2019, doi: 10.1016/j.eswa.2018.12.001.

R. Michaela Denise Gonzales and C. A. Hargreaves, “How can we use artificial intelligence for stock recommendation and risk management? A proposed decision support system,” Int. J. Inf. Manag. Data Insights, vol. 2, no. 2, p. 100130, 2022, doi: 10.1016/j.jjimei.2022.100130.

C. Kern, F. Gerdon, R. L. Bach, F. Keusch, and F. Kreuter, “Humans versus machines: Who is perceived to decide fairer? Experimental evidence on attitudes toward automated decision-making,” Patterns, vol. 3, no. 10, p. 100591, 2022, doi: 10.1016/j.patter.2022.100591.

G. Nápoles, I. Grau, L. Concepción, L. Koutsoviti Koumeri, and J. P. Papa, “Modeling implicit bias with fuzzy cognitive maps,” Neurocomputing, vol. 481, pp. 33–45, 2022, doi: 10.1016/j.neucom.2022.01.070.

N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan, “A Survey on Bias and Fairness in Machine Learning,” ACM Comput. Surv., vol. 54, no. 6, 2021, doi: 10.1145/3457607.

C. W. Liu and S. C. Kang, “A video-enabled dynamic site planner,” Comput. Civ. Build. Eng. - Proc. 2014 Int. Conf. Comput. Civ. Build. Eng., vol. 353, pp. 1562–1569, 2014, doi: 10.1061/9780784413616.194.

P. Zhang, Z. Zhang, D. Gong, and X. Cui, “A novel normal wiggly hesitant fuzzy multi-criteria group decision making method and its application to electric vehicle charging station location,” Expert Syst. Appl., vol. 223, no. October 2022, p. 119876, 2023, doi: 10.1016/j.eswa.2023.119876.

M. Abdel-Basset, A. Gamal, and S. S. Teleb, “Intelligent fuzzy decision‐making system of afforestation in new cities: A case study of the New Administrative Capital, Egypt,” Intell. Syst. with Appl., vol. 14, 2022, doi: 10.1016/j.iswa.2022.200085.

İ. Kaya, M. Çolak, and F. Terzi, “A comprehensive review of fuzzy multi criteria decision making methodologies for energy policy making,” Energy Strateg. Rev., vol. 24, no. May 2017, pp. 207–228, 2019, doi: 10.1016/j.esr.2019.03.003.

M. A. Wardana, “Implementasi Metode Fuzzy Multi Attribute Decision Making Pada Sistem Seleksi Penerimaan Calon Karyawan Baru Pt . Angkasa Global,” vol. 2, pp. 67–73, 2019.

S. Shojaeimehr and D. Rahmani, “Risk management of photovoltaic power plants using a novel fuzzy multi-criteria decision-making method based on prospect theory: A sustainable development approach,” Energy Convers. Manag. X, vol. 16, no. July, p. 100293, 2022, doi: 10.1016/j.ecmx.2022.100293.

M. A. Alao, O. M. Popoola, and T. R. Ayodele, “Sustainable prime movers selection for biogas-based combined heat and power for a community microgrid: A hybrid fuzzy multi criteria decision-making approach with consolidated ranking strategies,” Energy Convers. Manag. X, vol. 16, no. July, p. 100281, 2022, doi: 10.1016/j.ecmx.2022.100281.

J. Zhou, Y. Wu, C. Wu, Z. Deng, C. Xu, and Y. Hu, “A hybrid fuzzy multi-criteria decision-making approach for performance analysis and evaluation of park-level integrated energy system,” Energy Convers. Manag., vol. 201, no. September, p. 112134, 2019, doi: 10.1016/j.enconman.2019.112134.

M. R. Asadabadi, E. Chang, and M. Saberi, “Are MCDM methods useful? A critical review of Analytic Hierarchy Process (AHP) and Analytic Network Process (ANP),” Cogent Eng., vol. 6, no. 1, 2019, doi: 10.1080/23311916.2019.1623153.

Abstract viewed = 209 times