Digit and Mark Recognition Using Convolutional Neural Network for Voting Digitization in Indonesia
Main Article Content
Abstract
Digitization of voting results in Indonesia is essential to ensure the accuracy and integrity of the election process. This research introduces an innovative approach that uses Convolutional Neural Networks (CNN) for handwritten number recognition and tally mark recognition. This research uses a dataset obtained from Kaggle. The research process is conducted in several stages, namely Data Collection, Preprocessing, Data Sharing, Modelling, and Evaluation. The results showed that the proposed model achieved an accuracy of 98%. This research shows that using the CNN algorithm for handwritten number recognition and tally mark recognition can improve accuracy and efficiency in digitizing voting results. It is expected that this research can make a significant contribution to the development of a more reliable digital voting system. Future research is recommended to use a larger dataset to validate the strength of the model, which has been built on more varied data.
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
B. Heredia, J. D. Prusa, and T. M. Khoshgoftaar, “Social media for polling and predicting United States election outcome,” Social Network Analysis and Mining, vol. 8, no. 1, p. 48, Dec. 2018, doi: 10.1007/s13278-018-0525-y.
K. Brito and P. J. L. Adeodato, “Machine learning for predicting elections in Latin America based on social media engagement and polls,” Government Information Quarterly, vol. 40, no. 1, 2023, doi: 10.1016/j.giq.2022.101782.
D. E. Safitri and A. S. Fitrani, “Implementasi Metode Klasifikasi Dengan Algoritma Support Vector Machine Kernel Gaussian Rbf Untuk Prediksi Partisipasi Pemilu Terhadap Demografi Kota Surabaya,” Indonesian Journal of Business Intelligence (IJUBI), vol. 5, no. 1, p. 36, 2022, doi: 10.21927/ijubi.v5i1.2259.
V. JalajaJayalakshmi, V. Geetha, and M. M. Ijaz, “Analysis and Prediction of Stroke using Machine Learning Algorithms,” in 2021 International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA), 2021, pp. 1–5. doi: 10.1109/ICAECA52838.2021.9675545.
C. A. N. Batubara, H. H. Nuha, and S. Prabowo, “Sistem Akusisi Data Untuk Polling Berbasis Media Sosial Dan Autentikasi User Menggunakan Recaptcha,” eProceedings of Engineering, vol. 6, no. 2, 2019.
N. Putu, L. Santiari, and I. G. S. Rahayuda, “Perbandingan Akurasi Algoritma K-Nearest Neighbors ( KNN ) dan Naive Pattern Search ( NPS ) dalam Website Handwritten Recognition untuk Latihan Menulis Bentuk,” 2023.
I. P. A. P. Wibawa, I. K. A. Purnawan, D. P. S. Putri, and N. K. D. Rusjayanthi, “Prediksi Partisipasi Pemilih dalam Pemilu Presiden 2014 dengan Metode Support Vector Machine,” Jurnal Ilmiah Merpati (Menara Penelitian Akademika Teknologi Informasi), vol. 7, no. 3, p. 182, 2019, doi: 10.24843/jim.2019.v07.i03.p02.
W. I. Rahayu, A. Anindita, and M. N. Fauzan, “Penentuan validasi data pemilih dan klasifikasi hasil pemilu DPRD Kab. Bone untuk memprediksi partai pemenang menggunakan metode Naive Bayes,” Jurnal Teknik Informatika, vol. 14, no. 1, pp. 32–39, 2022.
M. I. R. Biru, “Partisipasi Masyarakat dalam Pemilu 2019 di Kabupaten Kutai Kartanegara,” EJournal Ilmu Pemerintahan, vol. 8, no. 2, 2020.
V. M. Safarzadeh and P. Jafarzadeh, “Offline Persian Handwriting Recognition with CNN and RNN-CTC,” in 2020 25th International Computer Conference, Computer Society of Iran (CSICC), 2020, pp. 1–10. doi: 10.1109/CSICC49403.2020.9050073.
S. Aqab and M. U. Tariq, “Handwriting recognition using artificial intelligence neural network and image processing,” International Journal of Advanced Computer Science and Applications, vol. 11, no. 7, pp. 137–146, 2020, doi: 10.14569/IJACSA.2020.0110719.
P. A. Winata and I. Roysida, “Implementation of a faster R-CNN algorithm for identification of metastatic tissue using lymphoma histopathological images,” 2023.
S. Prihatiningsih, N. S. M, F. Andriani, and N. Nugraha, “Analisa Performa Pengenalan Tulisan Tangan Angka Berdasarkan Jumlah Iterasi Menggunakan Metode Convolutional Neural Network,” Jurnal Ilmiah Teknologi dan Rekayasa, vol. 24, no. 1, pp. 58–66, 2019, doi: 10.35760/tr.2019.v24i1.1934.
R. Rosita, D. A. A. Pertiwi, and O. G. Khoirunnisa, “Prediction of hospital intensive patients using neural network algorithm,” Journal of Soft Computing Exploration, vol. 3, no. 1, pp. 8–11, 2022.
L. H. Husin et al., “Malpraktik Pemilu dan Korupsi: Analisis terhadap Proses Penghitungan dan Rekapitulasi pada Pemilu Indonesia 2019,” Integritas, vol. 7, no. 1, pp. 57–78, 2021, doi: 10.32697/integritas.v7i1.720.
R. Pradita, “Aplikasi Quick Count dalam Pemilihan Bupati di Kabupaten Nganjuk,” Generation Journal, vol. 6, no. 1, pp. 22–30, 2022.
S. N. J. Fitriyyah, N. Safriadi, and E. E. Pratama, “Analisis Sentimen Calon Presiden Indonesia 2019 dari Media Sosial Twitter Menggunakan Metode Naive Bayes,” JEPIN (Jurnal Edukasi dan Penelitian Informatika), vol. 5, no. 3, pp. 279–285, 2019.
S. Otjes, “The EU Elephant: Europe in the 2021 Dutch General Elections,” Intereconomics, vol. 56, no. 2, pp. 70–75, 2021, doi: 10.1007/s10272-021-0956-y.
A. S. Fitriani, “Penerapan Data Mining Menggunakan Metode Klasifikasi Naïve Bayes untuk Memprediksi Partisipasi Pemilihan Gubernur,” JTAM (Jurnal Teori dan Aplikasi Matematika), vol. 3, no. 2, pp. 98–104, 2019.
A. Subroto and A. Apriyana, “Cyber risk prediction through social media big data analytics and statistical machine learning,” Journal of Big Data, vol. 6, no. 1, p. 50, 2019, doi: 10.1186/s40537-019-0216-1.
K. K. Mohbey, “Multi-class approach for user behavior prediction using deep learning framework on twitter election dataset,” Journal of Data, Information and Management, vol. 2, no. 1, pp. 1–14, 2020, doi: 10.1007/s42488-019-00013-y.
A. A. SG. Mas Karunia Maharani, Komang Oka Saputra, and Ni Made Ary Esta Dewi Wirastuti, “Komparasi Metode Backpropagation Neural Network dan Convolutional Neural Network Pada Pengenalan Pola Tulisan Tangan,” Journal of Computer Science and Informatics Engineering (J-Cosine), vol. 6, no. 1, pp. 56–63, 2022, doi: 10.29303/jcosine.v6i1.431.
M. D. Kamalesh and B. B, “Personality prediction model for social media using machine learning Technique,” Computers and Electrical Engineering, vol. 100, p. 107852, 2022, doi: https://doi.org/10.1016/j.compeleceng.2022.107852.
L. Wang, X. Qian, Y. Zhang, J. Shen, and X. Cao, “Enhancing Sketch-Based Image Retrieval by CNN Semantic Re-ranking,” IEEE Transactions on Cybernetics, vol. 50, no. 7, pp. 3330–3342, 2020, doi: 10.1109/TCYB.2019.2894498.
M. I. WICAKSONO, “Pendeteksian Api Berbasis Pengolahan Citra Digital Menggunakan Metode Convolutional Neural Network,” Etd.Repository.Ugm.Ac.Id, 2020.
A. S. Talita and A. Wiguna, “Implementasi algoritma long short-term memory (LSTM) untuk mendeteksi ujaran kebencian (Hate Speech) pada kasus pilpres 2019,” MATRIK: Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 19, no. 1, pp. 37–44, 2019.