The Asthma Classification Using an Adaptive Boosting Model with SVM-SMOTE Sampling
Main Article Content
Abstract
Asthma is a disease that affects the human respiratory tract, characterized by inflammation and narrowing of the respiratory tract such as wheezing, coughing, and shortness of breath. The causes of asthma can come from genetics, lifestyle, and a bad environment. Diagnosis made to asthma patients is very influential on the severity and treatment carried out. However, the diagnosis process may not be able to precisely determine asthma patients because the diagnosis is influenced by the classification of asthma based on the symptoms that appear. Therefore, this study proposes an asthma disease classification model that is optimized using a sampling method to balance the data. The proposed classification model uses the Adaptive Boosting algorithm with a sampling technique using SVM-SMOTE to help balance the data. The results obtained from the experiment achieved an accuracy of 98.60%. This result shows that the proposed model is more accurate and optimal in performing classification when compared to previous research.
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
H. C. Kuo, B. S. Lin, Y. Di Wang, dan B. S. Lin, “Development of Automatic Wheeze Detection Algorithm for Children with Asthma,” IEEE Access, vol. 9, hal. 126882–126890, 2021, doi: 10.1109/ACCESS.2021.3111507.
Y. Wu, J. Zhang, Y. Chen, J. Wang, W. Shi, dan Q. Zhang, “Ubi-Asthma: Toward Ubiquitous Asthma Detection Using the Smartwatch,” IEEE Internet Things J., vol. 10, no. 13, hal. 11576–11587, 2023, doi: 10.1109/JIOT.2023.3243188.
D. Bagnasco et al., “Severe asthma: One disease and multiple definitions,” World Allergy Organ. J., vol. 14, no. 11, 2021, doi: 10.1016/j.waojou.2021.100606.
M. A. Awal et al., “An Early Detection of Asthma Using BOMLA Detector,” IEEE Access, vol. 9, hal. 58403–58420, 2021, doi: 10.1109/ACCESS.2021.3073086.
R. Haba, G. Singer, S. Naftali, M. R. Kramer, dan A. Ratnovsky, “A remote and personalised novel approach for monitoring asthma severity levels from EEG signals utilizing classification algorithms,” Expert Syst. Appl., vol. 223, no. February, hal. 119799, 2023, doi: 10.1016/j.eswa.2023.119799.
J. L. M. Amaral, A. G. Sancho, A. C. D. Faria, A. J. Lopes, dan P. L. Melo, “Differential diagnosis of asthma and restrictive respiratory diseases by combining forced oscillation measurements, machine learning and neuro-fuzzy classifiers,” Med. Biol. Eng. Comput., vol. 58, no. 10, hal. 2455–2473, 2020, doi: 10.1007/s11517-020-02240-7.
D. Aulia, R. Sarno, S. C. Hidayati, dan M. Rivai, “Optimization of the Electronic Nose Sensor Array for Asthma Detection Based on Genetic Algorithm,” IEEE Access, vol. 11, no. June, hal. 74924–74935, 2023, doi: 10.1109/ACCESS.2023.3291451.
Z. J. Lee, M. R. Yang, dan B. J. Hwang, “A Sustainable Approach to Asthma Diagnosis: Classification with Data Augmentation, Feature Selection, and Boosting Algorithm,” Diagnostics, vol. 14, no. 7, 2024, doi: 10.3390/diagnostics14070723.
R. Khasha, M. M. Sepehri, dan N. Taherkhani, “Detecting asthma control level using feature-based time series classification,” Appl. Soft Comput., vol. 111, hal. 107694, 2021, doi: 10.1016/j.asoc.2021.107694.
S. Pang, Y. Zhang, M. Ding, X. Wang, dan X. Xie, “A Deep Model for Lung Cancer Type Identification by Densely Connected Convolutional Networks and Adaptive Boosting,” IEEE Access, vol. 8, hal. 4799–4805, 2020, doi: 10.1109/ACCESS.2019.2962862.
E. Rizkyani, N. Aliffiyanti Iskandar, dan N. Chamidah, “Klasifikasi dalam Mendeteksi Penyakit Kanker Payudara dengan Menggunakan Metode Random Forest dan Adaboost,” Semin. Nas. Mhs. Ilmu Komput. dan Apl. Jakarta-Indonesia, no. September, hal. 335–343, 2021, [Daring]. Tersedia pada: www.kaggle.com
P. Bhardwaj, A. Tyagi, S. Tyagi, J. Antão, dan Q. Deng, “Machine learning model for classification of predominantly allergic and non-allergic asthma among preschool children with asthma hospitalization,” J. Asthma, vol. 60, no. 3, hal. 487–495, 2023, doi: 10.1080/02770903.2022.2059763.
S. Z. H. Naqvi, M. Arooj, S. Aziz, M. U. Khan, M. A. Choudhary, dan M. N. Ul Hassan, “Spectral Analysis of Lungs sounds for Classification of Asthma and Pneumonia Wheezing,” 2nd Int. Conf. Electr. Commun. Comput. Eng. ICECCE 2020, no. June, 2020, doi: 10.1109/ICECCE49384.2020.9179417.
S. V. Razavi‐termeh, A. Sadeghi‐niaraki, dan S. M. Choi, “Spatial modeling of asthma‐prone areas using remote sensing and ensemble machine learning algorithms,” Remote Sens., vol. 13, no. 16, hal. 1–22, 2021, doi: 10.3390/rs13163222.
S. S. Bagui, D. Mink, S. C. Bagui, dan S. Subramaniam, “Determining Resampling Ratios Using BSMOTE and SVM-SMOTE for Identifying Rare Attacks in Imbalanced Cybersecurity Data,” Computers, vol. 12, no. 10, 2023, doi: 10.3390/computers12100204.
T. H. S. Li, H. J. Chiu, dan P. H. Kuo, “Hepatitis C Virus Detection Model by Using Random Forest, Logistic-Regression and ABC Algorithm,” IEEE Access, vol. 10, no. August, hal. 91045–91058, 2022, doi: 10.1109/ACCESS.2022.3202295.
H. F. El-Sofany, “Predicting Heart Diseases Using Machine Learning and Different Data Classification Techniques,” IEEE Access, vol. 12, no. August, hal. 106146–106160, 2024, doi: 10.1109/ACCESS.2024.3437181.
R. Rofik, F. Artiyani, dan D. A. A. Pertiwi, “Breast Cancer Diagnosis Utilizing Artificial Neural Network (ANN) Algorithm for Integrating Multi-Omics Data and Clinical Features,” J. Inf. Syst. Explor. Res., vol. 2, no. 2, hal. 61–68, 2024, doi: 10.52465/joiser.v2i2.249.
A. R. Safitri dan M. A. Muslim, “Improved Accuracy of Naive Bayes Classifier for Determination of Customer Churn Uses SMOTE and Genetic Algorithms,” J. Soft Comput. Explor., vol. 1, no. 1, hal. 70–75, 2020, doi: 10.52465/joscex.v1i1.5.
R. Nithya, T. Kokilavani, dan T. L. A. Beena, “Balancing cerebrovascular disease data with integrated ensemble learning and SVM-SMOTE,” Netw. Model. Anal. Heal. Informatics Bioinforma., vol. 13, no. 1, 2024, doi: 10.1007/s13721-024-00447-4.
A. S. Almajid, “Multilayer Perceptron Optimization on Imbalanced Data Using SVM-SMOTE and One-Hot Encoding for Credit Card Default Prediction,” J. Adv. Inf. Syst. Technol., vol. 3, no. 2, hal. 67–74, 2022, doi: 10.15294/jaist.v3i2.57061.
M. Mamun, A. Farjana, M. Al Mamun, dan M. S. Ahammed, “Lung cancer prediction model using ensemble learning techniques and a systematic review analysis,” 2022 IEEE World AI IoT Congr. AIIoT 2022, hal. 187–193, 2022, doi: 10.1109/AIIoT54504.2022.9817326.
A. Lestari, “Increasing Accuracy of C4.5 Algorithm Using Information Gain Ratio and Adaboost for Classification of Chronic Kidney Disease,” J. Soft Comput. Explor., vol. 1, no. 1, hal. 32–38, 2020, doi: 10.52465/joscex.v1i1.6.
E. Listiana, R. Muzayanah, M. A. Muslim, dan E. Sugiharti, “Optimization of support vector machine using information gain and adaboost to improve accuracy of chronic kidney disease diagnosis,” J. Soft Comput. Explor., vol. 4, no. 3, hal. 152–158, 2023.
E. Bolat, H. Yildirim, S. Altin, dan E. Yurtseven, “a Comprehensive Comparison of Machine Learning Algorithms on Diagnosing Asthma Disease and Copd,” PONTE Int. Sci. Res. J., vol. 76, no. 3, 2020, doi: 10.21506/j.ponte.2020.3.17.
W. Xu et al., “Automatic pediatric congenital heart disease classification based on heart sound signal,” Artif. Intell. Med., vol. 126, no. December 2021, hal. 102257, 2022, doi: 10.1016/j.artmed.2022.102257.
M. Lopez-Perez, P. Morales-Alvarez, L. A. D. Cooper, R. Molina, dan A. K. Katsaggelos, “Deep Gaussian Processes for Classification With Multiple Noisy Annotators. Application to Breast Cancer Tissue Classification,” IEEE Access, vol. 11, no. January, hal. 6922–6934, 2023, doi: 10.1109/ACCESS.2023.3237990.
M. Qorib, T. Oladunni, M. Denis, E. Ososanya, dan P. Cotae, “Covid-19 vaccine hesitancy: Text mining, sentiment analysis and machine learning on COVID-19 vaccination Twitter dataset,” Expert Syst. Appl., vol. 212, hal. 118715, 2023, doi: https://doi.org/10.1016/j.eswa.2022.118715.
F. Jáñez-Martino, R. Alaiz-Rodríguez, V. González-Castro, E. Fidalgo, dan E. Alegre, “Classifying spam emails using agglomerative hierarchical clustering and a topic-based approach,” Appl. Soft Comput., vol. 139, hal. 110226, 2023, doi: 10.1016/j.asoc.2023.110226.
M. A. Heuvelmans et al., “Lung cancer prediction by Deep Learning to identify benign lung nodules,” Lung Cancer, vol. 154, no. January, hal. 1–4, 2021, doi: 10.1016/j.lungcan.2021.01.027.