An Implementation of Loyalty Program Theory Based on Recency Frequency Monetary Score in Information Systems to Increase Customer Loyalty

Main Article Content

Ricky Rajagukguk

Abstract

This study aims to help online retail stores find the right strategy for treating customers through customer segmentation based on Recency, Frequency, and Monetary (RFM) Score. With a quantitative approach, this study uses the K-Means Clustering algorithm to group customers based on their RFM values ​​and applies it within the Loyalty Program Theory framework. The results show that the Best Customers segment has the highest percentage at 26.3%, which emphasizes the importance of retaining high-value customers through exclusive loyalty programs such as VIP access and premium offers. In contrast, the Lost Customers segment at 24.8% requires attention through retargeting and discount programs to attract them back. This study proves that data-based customer segmentation and the implementation of relevant strategies can strengthen long-term relationships with customers, increase loyalty, and ultimately help the development of online retail businesses.

Article Details

How to Cite
Rajagukguk, R. (2025). An Implementation of Loyalty Program Theory Based on Recency Frequency Monetary Score in Information Systems to Increase Customer Loyalty. Journal of Information System Exploration and Research, 3(1), 45-52. https://doi.org/10.52465/joiser.v3i1.538
Section
Articles

References

B. S. Ashari, S. C. Otniel, and Rianto, “Perbandingan Kinerja K-Means Dengan DSCAN Untuk Metode Clustering Data Penjualan Online Retail,” J. Siliwangi, vol. 5, no. 2, pp. 72–77, 2019.

G. Anggaranie, “Perkembangan E-Commerce Beserta Klasifikasinya,” J. SupplyChain, pp. 1–4, 2017.

A. Sciences, “CUSTOMER SEGMENTATION BY USING RFM MODEL AND CLUSTERING METHODS : A CASE,” pp. 1–19, 2018.

Y. H. Chrisnanto and A. Kanianingsih, “Pengelompokan Ekuitas Pelanggan Berbasis Recency Frequency Monetary (Rfm) Menggunakan K-Means Clustering,” Semin. Nas. Teknol. Inf. dan Komun. 2019 (SENTIKA 2019), vol. 2019, no. Sentika, 2019.

P. Apriyani, A. R. Dikananda, and I. Ali, “Penerapan Algoritma K-Means dalam Klasterisasi Kasus Stunting Balita Desa Tegalwangi,” Hello World J. Ilmu Komput., vol. 2, no. 1, pp. 20–33, 2023, doi: 10.56211/helloworld.v2i1.230.

H. K. Sari, “Efektivitas Loyalty Program dalam Customer Relationship Management terhadap Kepuasan dan Loyalitas Pelanggan,” Ilmu Komun., p. 30, 2009.

L. S. Musianto, “Perbedaan Pendekatan Kuantitatif Dengan Pendekatan Kualitatif Dalam Metode Penelitian,” J. Manaj. dan Wirausaha, vol. 4, no. 2, pp. 123–136, 2002, doi: 10.9744/jmk.4.2.pp.123-136.

A. . Rahmat, M. . Ladjamuddin, and T. . Awaludin, “Perbandingan Algoritma Decision Tree, Random Forest Dan Naive Bayes Pada Prediksi Penilaian Kepuasan Penumpang Maskapai Pesawat Menggunakan Dataset Kaggle,” J. Rekayasa Inf., vol. 12, no. 2, pp. 150–159, 2023.

R. Nofitri and N. Irawati, “Analisis Data Hasil Keuntungan Menggunakan Software Rapidminer,” JURTEKSI (Jurnal Teknol. dan Sist. Informasi), vol. 5, no. 2, pp. 199–204, 2019, doi: 10.33330/jurteksi.v5i2.365.

D. A. I. C. Dewi and D. A. K. Pramita, “Analisis Perbandingan Metode Elbow dan Silhouette pada Algoritma Clustering K-Medoids dalam Pengelompokan Produksi Kerajinan Bali,” Matrix J. Manaj. Teknol. dan Inform., vol. 9, no. 3, pp. 102–109, 2019, doi: 10.31940/matrix.v9i3.1662.

A. Chaudhuri and M. B. Holbrook, “The Chain of Effects from Brand Trust and Brand Affect to Brand Performance: The Role of Brand Loyalty,” J. Mark., vol. 65, no. 2, pp. 81–93, Apr. 2001, doi: 10.1509/jmkg.65.2.81.18255.

D. J. KETCHEN and C. L. SHOOK, “THE APPLICATION OF CLUSTER ANALYSIS IN STRATEGIC MANAGEMENT RESEARCH: AN ANALYSIS AND CRITIQUE,” Strateg. Manag. J., vol. 17, no. 6, pp. 441–458, Jun. 1996, doi: https://doi.org/10.1002/(SICI)1097-0266(199606)17:6<441::AID-SMJ819>3.0.CO;2-G.

A. S. Dick and K. Basu, “Customer loyalty: Toward an integrated conceptual framework,” J. Acad. Mark. Sci., vol. 22, no. 2, pp. 99–113, 1994, doi: 10.1177/0092070394222001.

B. Sharp and A. Sharp, “Loyalty programs and their impact on repeat-purchase loyalty patterns,” Int. J. Res. Mark., vol. 14, no. 5, pp. 473–486, 1997, doi: https://doi.org/10.1016/S0167-8116(97)00022-0.

V. Kumar and D. Shah, “Building and sustaining profitable customer loyalty for the 21st century,” J. Retail., vol. 80, no. 4, pp. 317–329, 2004, doi: https://doi.org/10.1016/j.jretai.2004.10.007.

Abstract viewed = 13 times