Ensemble Learning-based Potato Leaf Disease Classification Using DenseNet201 and MobileNetV2

Main Article Content

Burhan Ahmad
Alamsyah

Abstract

Early and late blight are major threats to potato crops and can cause significant losses for farmers. Early disease classification is essential for quick and appropriate treatment. This study proposes an ensemble learning approach by combining DenseNet201 and MobileNetV2 architectures to classify potato leaf diseases from digital images. The dataset used consists of 2,152 potato leaf images and is processed through normalization, augmentation, and image resizing stages. The ensemble model was trained with optimized parameters and evaluated using accuracy, precision, recall, and F1-score. The test results showed an accuracy of 99.56%, with precision, recall, and F1- score values of 99.56% each. Demonstrated improved performance compared to single CNN models on the evaluated dataset, and offers an accurate and efficient solution for disease detection in the agricultural sector.

Article Details

How to Cite
Ahmad, B., & Alamsyah. (2026). Ensemble Learning-based Potato Leaf Disease Classification Using DenseNet201 and MobileNetV2. Journal of Information System Exploration and Research, 4(1). https://doi.org/10.52465/joiser.v4i1.597
Section
Articles

References

M. P. J. Tabe-Ojong, I. Nana, A. Zimmermann, and Y. Jafari, “Trends and Evolution of Global Value Chains in Food and Agriculture: Implications for Food Security and Nutrition,” Food Policy, vol. 127, p. 102679, 2024, doi: https://doi.org/10.1016/j.foodpol.2024.102679.

F. Costa, S. Frecassetti, M. Rossini, and A. Portioli-Staudacher, “Industry 4.0 Digital Technologies Enhancing Sustainability: Applications and Barriers From the Agricultural Industry in an Emerging Economy,” J. Clean. Prod., vol. 408, no. December 2022, p. 137208, 2023, doi: 10.1016/j.jclepro.2023.137208.

E. K. Gyamfi, Z. ElSayed, J. Kropczynski, M. A. Yakubu, and N. Elsayed, “Agricultural 4.0 Leveraging on Technological Solutions: Study for Smart Farming Sector,” in 2024 IEEE 3rd International Conference on Computing and Machine Intelligence (ICMI), 2024, pp. 1–9. doi: 10.1109/ICMI60790.2024.10585910.

T. MULUGETA, J. B. MUHINYUZA, R. GOUWS-MEYER, L. MATSAUNYANE, E. ANDREASSON, and E. ALEXANDERSSON, “Botanicals and Plant Strengtheners for Potato and Tomato Cultivation in Africa,” J. Integr. Agric., vol. 19, no. 2, pp. 406–427, 2020, doi: 10.1016/S2095-3119(19)62703-6.

R. A. Sholihati, I. A. Sulistijono, A. Risnumawan, and E. Kusumawati, “Potato Leaf Disease Classification Using Deep Learning Approach,” IES 2020 - Int. Electron. Symp. Role Auton. Intell. Syst. Hum. Life Comf., pp. 392–397, 2020, doi: 10.1109/IES50839.2020.9231784.

D. Tiwari, M. Ashish, N. Gangwar, A. Sharma, S. Patel, and S. Bhardwaj, “Potato Leaf Diseases Detection Using Deep Learning,” in 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), 2020, pp. 461–466. doi: 10.1109/ICICCS48265.2020.9121067.

S. meng DONG and S. qun ZHOU, “Potato Late Blight Caused by Phytophthora Infestans: From Molecular Interactions to Integrated Management Strategies,” J. Integr. Agric., vol. 21, no. 12, pp. 3456–3466, 2022, doi: 10.1016/j.jia.2022.08.060.

M. Radwan, A. A. Alhussan, A. Ibrahim, and S. M. Tawfeek, “Potato Leaf Disease Classification Using Optimized Machine Learning Models and Feature Selection Techniques,” Potato Res., no. 0123456789, 2024, doi: 10.1007/s11540-024-09763-8.

L. Meno, I. K. Abuley, O. Escuredo, and M. C. Seijo, “Suitability of Early Blight Forecasting Systems for Detecting First Symptoms in Potato Crops of NW Spain,” Agronomy, vol. 12, no. 7, pp. 8–12, 2022, doi: 10.3390/agronomy12071611.

P. Paluchowska, J. Śliwka, and Z. Yin, “Late Blight Resistance Genes in Potato Breeding,” Planta, vol. 255, no. 6, pp. 1–20, 2022, doi: 10.1007/s00425-022-03910-6.

S. U. Khan, A. Alsuhaibani, A. Alabduljabbar, F. Almarshad, Y. N. Altherwy, and T. Akram, A Review on Automated Plant Disease Detection: Motivation, Limitations, Challenges, and Recent Advancements for Future Research, vol. 37, no. 3. Springer International Publishing, 2025. doi: 10.1007/s44443-025-00040-3.

A. Arshaghi, M. Ashourian, and L. Ghabeli, “Potato Diseases Detection and Classification Using Deep Learning Methods,” Multimed. Tools Appl., vol. 82, no. 4, pp. 5725–5742, 2023, doi: 10.1007/s11042-022-13390-1.

A. Alamsyah and T. Fadila, “Increased accuracy of prediction hepatitis disease using the application of principal component analysis on a support vector machine,” J. Phys. Conf. Ser., vol. 1968, no. 1, 2021, doi: 10.1088/1742-6596/1968/1/012016.

S. S. Harakannanavar, J. M. Rudagi, V. I. Puranikmath, A. Siddiqua, and R. Pramodhini, “Plant Leaf Disease Detection Using Computer Vision and Machine Learning Algorithms,” Glob. Transitions Proc., vol. 3, no. 1, pp. 305–310, 2022, doi: 10.1016/j.gltp.2022.03.016.

J. Yao, S. N. Tran, S. Sawyer, and S. Garg, Machine Learning for Leaf Disease Classification: Data, Techniques and Applications, vol. 56, no. s3. Springer Netherlands, 2023. doi: 10.1007/s10462-023-10610-4.

M. Dutta, D. Gupta, Y. Gulzar, M. S. Mir, C. W. Onn, and A. B. Soomro, “Leveraging Inception V3 for Precise Early and Late Blight Disease Classification in Potato Crops,” Trait. du Signal, vol. 41, no. 2, pp. 705–715, 2024, doi: 10.18280/ts.410213.

S. K. Upadhyay, J. Jain, and R. Prasad, “Early Blight and Late Blight Disease Detection in Potato Using Efficientnetb0,” Int. J. Exp. Res. Rev., vol. 38, pp. 15–25, 2024, doi: 10.52756/ijerr.2024.v38.002.

F. Zubair, M. Saleh, Y. Akbari, and S. Al Maadeed, “A Robust Ensemble Model for Plant Disease Detection Using Deep Learning Architectures,” AgriEngineering, vol. 7, no. 5, 2025, doi: 10.3390/agriengineering7050159.

P. Goyal, R. Sharda, M. Saini, and M. Siag, “A Deep Learning Approach for Early Detection of Drought Stress in Maize using Proximal Scale Digital Images,” Neural Comput. Appl., vol. 36, no. 4, pp. 1899–1913, 2024, doi: 10.1007/s00521-023-09219-z.

P. Pai, S. Amutha, M. Basthikodi, B. M. Ahamed Shafeeq, K. M. Chaitra, and A. P. Gurpur, “A Twin CNN-based Framework for Optimized Rice Leaf Disease Classification With Feature Fusion,” J. Big Data, vol. 12, no. 1, 2025, doi: 10.1186/s40537-025-01148-z.

R. A. Charisma and F. D. Adhinata, “Transfer Learning With Densenet201 Architecture Model For Potato Leaf Disease Classification,” in 2023 International Conference on Computer Science, Information Technology and Engineering (ICCoSITE), 2023, pp. 738–743. doi: 10.1109/ICCoSITE57641.2023.10127772.

J. Chen, D. Zhang, M. Suzauddola, and A. Zeb, “Identifying Crop Diseases Using Attention Embedded MobileNet-V2 Model,” Appl. Soft Comput., vol. 113, p. 107901, 2021, doi: https://doi.org/10.1016/j.asoc.2021.107901.

M. A. Iqbal and K. H. Talukder, “Detection of Potato Disease Using Image Segmentation and Machine Learning,” in 2020 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET), 2020, pp. 43–47. doi: 10.1109/WiSPNET48689.2020.9198563.

A. Singh and H. Kaur, “Potato Plant Leaves Disease Detection and Classification Using Machine Learning Methodologies,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1022, no. 1, 2021, doi: 10.1088/1757-899X/1022/1/012121.

C. Hou et al., “Recognition of Early Blight and Late Blight Diseases on Potato Leaves Based on Graph Cut Segmentation,” J. Agric. Food Res., vol. 5, p. 100154, 2021, doi: 10.1016/j.jafr.2021.100154.

B. Prasetiyo, Alamsyah, M. F. Al Hakim, Jumanto, and M. H. Adi, “Differential augmentation data for vehicle classification using convolutional neural network,” AIP Conf. Proc., vol. 2614, no. 1, p. 40001, Jun. 2023, doi: 10.1063/5.0126720.

Alamsyah, B. Prasetiyo, M. F. Al Hakim, and F. D. Pradana, “The improvement of COVID-19 prediction accuracy using optimal parameters in reccurent neural network model,” AIP Conf. Proc., vol. 2614, no. 1, p. 40019, Jun. 2023, doi: 10.1063/5.0125767.

Abstract viewed = 0 times