

Journal of Soft Computing Exploration

Homepage: htttps://shmpublisher.com/index.php/joscex

p-ISSN: 2746-7686

e-ISSN: 2746-0991

 © SHM Publisher 1

Activity-based function point complexity of use case diagrams

for software effort estimation

Puguh Jayadi1*, Renny Sari Dewi2, Kelik Sussolaikah3
1, 3Department of Informatic, Universitas PGRI Madiun, Indonesia

2Department of Digital Business, Universitas Negeri Surabaya, Indonesia

Article Info ABSTRACT

Article history:

Received November 25, 2023

Revised December 19, 2023

Accepted January 24, 2024

 This study proposes a function point analysis (FPA) based software

development effort estimation methodology integrated with use case

diagrams. These methods include identifying actor activities, classifying those

activities into FPA categories, and calculating unadjusted function points

(UFP). Followed by the calculation of technical complexity factors (TCF) and

Adjusted Function Points (AFP), this study aims to produce more accurate

estimates of man-hours. The results show a UFP of 162 TCF of 11, AFP of

123.12, and an estimated effort of 1846.8 hours worked, while the actual effort

is 1228 hours. Evaluation of estimates using the metrics Mean Magnitude of

Relative Error (MMER) 0.34, Mean Magnitude of Relative Error (MMRE)

0.50, Mean Absolute Error (MAE) 618.80, Mean Balanced Relative Error

(MBRE) 0.50, Mean Inverse Balanced Relative Error (MIBRE) 0.34, and Root

Mean Squared Error (RMSE) 618.80, showed sufficient precision despite the

overestimation. The study suggests the need to adjust the TCF calculations and

considering development environment in more detail to improve the accuracy

of the estimate. These findings are essential in improving the precision of

effort estimation methodologies in software development, particularly in

projects that use use case diagrams as the primary framework.

Keywords:

Function point analysis

Use case diagrams

Software effort estimation

Adjusted function points

Estimation accuracy

This is an open access article under the CC BY-SA license.

Corresponding Author:

Puguh Jayadi,

Department of Informatics,

Universitas PGRI Madiun,

Jl. Auri No.14-16, Kanigoro, Kartoharjo, Kota Madiun, Jawa Timur 63117, Indonesia

Email: puguh.jayadi@unipma.ac.id

https://doi.org/10.52465/joscex.v5i1.252

1. INTRODUCTION

The development of information technology provides many conveniences and benefits to various

aspects of human life [1]. Software development is becoming increasingly complex in this digital

transformation era, making software business estimation a critical component in project management. The

business process is a series of interrelated activities to achieve a goal, which is carried out by the system in

parallel or sequentially [2]. Effort estimation is a process by which one can predict the development time and

cost to develop a software process or product [3]. Traditional effort estimation techniques are frequently

required to be revised to cope with the increasing complexity of software projects. As done by [4] which

combines use case point (UCP) with Artificial Neural Network. In this context, Function Point Analysis (FPA)

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.52465/joscex.v5i1.

2 Jayadi et al. / J. Soft Comput. Explor., Vol. 5, No. 1, Maret 2024: 1-8

is emerging as an effective method that offers objective measurement of user functionality [5]. However,

adjusting to contemporary complexity, especially regarding use case diagrams, remains a significant challenge.

Previous research, as described in [6], has explored the use of genetic algorithms in FPA, while [7]

incorporates machine learning techniques to predict the estimated effort. Both approaches offer valuable

insights but need more attention to the specific dynamics of Use Case Diagrams in estimation. The use case

diagram is used to determine what requirements are needed from the system [8]. Within [9] they took an

essential step by incorporating use case diagrams into FPAs. However, their methods still need to fully

accommodate the diverse complexity of the activities depicted in those diagrams. Further [10] proposes the use

of complexity graphs to measure FPA, but the approach must integrate the elements effectively and thoroughly.

A significant limitation in the literature lies in the lack of a methodology that specifically addresses

the components of use case diagrams in the context of FPAs [11]. Many existing approaches need to generalize

or pay more attention to the specific nuances of the described activity, which can lead to less precise estimates.

This research proposes a new method that integrates in-depth Use Case Diagrams with Function Points analysis

to produce more accurate work estimates. This unique approach explicitly targets the complexity derived from

the interactions between various elements in Use Case Diagrams, which should have been considered in

previous research. By considering each activity and its exchanges, this study aims to develop a more holistic

and precise framework in software business estimation.

There are several approaches taken by one of the previous studies such as combining the Constructive

Cost Model II (COCOMO II) and the Artificial Neural Network (ANN) The results provide values that are

close to the actual effort data, but there are shortcomings due to the complexity of the ANN with many

parameters [12]. This paper aims to fill in existing gaps by providing new insights into how Use Case Diagrams

can be effectively integrated into FPAs. This approach is expected to improve the accuracy of the effort

estimates, which directly contributes to more efficient and effective project management. This is critical given

the importance of accurate estimation in resource allocation, scheduling, and budget management in software

development projects.

2. METHOD

This study takes a methodical approach to incorporating use case diagrams into Function Point

measurements in order to produce a more accurate evaluation of software efforts. Figure 1 depicts the research

method, which entails finding, categorizing, and calculating numerous components linked to Function Points

and their use in the context of Use Case Diagrams. Begin with a description of the use case diagram and then

count components using function point analysis and Effort Evaluation.

Figure 1. Research method

From Figure 1 these methodological steps are designed to obtain a more holistic and detailed picture

of the effort required in a software development project. The following steps are followed:

Jayadi et.al/ J. Soft Comput. Explor., Vol. 5, No. 1, Maret 2024: 1-8 3

1) Activity Registration of Each Actor on the Use Case Diagram: First, all activities performed by each actor

in the Use Case Diagram are registered. This includes the actions they perform or receive in the system.

This step is essential to understand all the interactions that occur, and the elements involved in the system.

2) Activity Details and Adjustments to FPA Components: Each activity is then detailed and categorized

according to the five components of the Function Point: External Inputs (EI), External Outputs (EO),

External Inquiries (EQ), Internal Logical Files (ILF), and External Interface Files (EIF). This process

involves an in-depth analysis of how each activity relates to these components [13].

3) Complexity Calculation for FPA Components: Each component of FPA (EI, EO, EQ, ILF, EIF) is then

calculated based on its complexity: Simple, Average, or Complex [14]. Table 1 involves evaluating the

level of difficulty, volume of data, and interaction with other components of the system.

Table 1. Component classification
Complexity Simple Average Complex
External Inputs (EI) 1 1 - 5 > 5
External Outputs (EO) 1 - 2 3 - 4 > 5
External Inquiries (EQ): 1 - 3 4 - 5 > 5
Internal Logical Files (ILF): 1 - 2 3 - 4 > 4
External Interface Files (EIF): 1 - 2 3 - 4 > 4

4) Unadjusted Function Point (UFP) Calculation: Based on the previous calculation, the Unadjusted Function

Point is calculated [15]. UFP is the total of all component functions of the function point, calculated based

on their respective values adjusted for complexity. UFP is calculated by summing the weights of each FPA

component (EI, EO, EQ, ILF, EIF) based on its complexity [16].

UFP = ∑(nEI×wEI) + ∑(nEO×wEO) + ∑(nEQ×wEQ) + ∑(nILF×wILF) + ∑(nEIF×wEIF) (1)

5) Technical Complexity Factors (TCF) Calculation: Then the technical complexity factors are calculated.

The TCF describes the factors that affect the technical and software development environment, which can

affect the overall complexity of the project, as shown in Table 2. Filled with values between 0 and 5, where

0 is not of influence and 5 is very influential. The formula calculates TCF:

TCF = 0.65 + 0.01 × ∑CF (2)

Table 2. Technical complexity factors
Complexity Value

Data communications 0-5

Distributed data processing 0-5
Performance 0-5

Heavily used configuration 0-5

Transaction rate 0-5
On-Line data entry 0-5

End-user efficiency 0-5

On-Line update 0-5
Complex processing 0-5

Reusability 0-5

Installation ease 0-5
Operational ease 0-5

Multiple sites 0-5

Facilitate change 0-5

6) Adjusted Function Point (AFP) Calculation: Using UFP and TCF, the adjusted function point is calculated.

The AFP provides a more accurate representation of the effort required, considering the technical

complexity and development environment (Park et al., 2016). AFP is calculated by multiplying UFP by

TCF using the formula:

AFP = UFP×TCF (3)

7) Effort (man-hours) Calculation: The next step is to calculate the effort required (in man-hours) based on

the AFP. This analysis method involves the use of predefined formulas or models, which may consider

factors such as team efficiency, experience, and tools used [17]. The effort required is calculated using

AFP and a coefficient that determines the Productivity Rate (PR) per Function Point, with the formula:

4 Jayadi et al. / J. Soft Comput. Explor., Vol. 5, No. 1, Maret 2024: 1-8

Effort (man-hours) = AFP×Productivity Rate (PR) (4)

8) Evaluate Effort with Statistical Metrics: After the calculation of effort (man-hours) is completed, the next

step is to evaluate the results using a series of statistical metrics to validate the accuracy and reliability of

the estimates. Using these metrics comprehensively evaluates how close the estimate is to the actual value.

Identify areas where the estimation method may need adjustment or improvement. This evaluation is

essential to ensure that the methodology developed is theoretical, but also practical and reliable in actual

use. These metrics include Estimation Evaluation using the metrics Mean Magnitude of Relative Error

(MMER), Mean Magnitude of Relative Error (MMRE), Mean Absolute Error (MAE), Mean Balanced

Relative Error (MBRE), Mean Inverse Balanced Relative Error (MIBRE) and Root Mean Squared Error

(RMSE) [18], [19].

3. RESULTS AND DISCUSSIONS

The purpose of this study is to calculate the value of effort with function points based on the activity

details of the use case diagram. The project data used are from the management system project and the Early

Childhood Islamic Education Portal (Pendididkan Islam Anak Usia Dini - PIAUD) with the Use Case Diagram

as shown in Figure 2. All data used in this research weighting are based on interviews with all parties involved

in developing PIAUD, both programmers and project managers.

The initial step of the study is to identify and record the activities of each actor in use case diagrams.

This process involves an analysis of the actor's interaction with the system, including data input, decision

making, and output acceptance [20]. These activities are classified by type of interaction to understand the

complexity of the functions involved. This analysis reveals that role variations and actor interactions

significantly impact system complexity. Logging each interaction in detail provides a better understanding of

the workload and complexity of functions in the system, which is essential for determining the number of

Function Points [21]. Iterative validation with stakeholders is also carried out to ensure the completeness of

the data and a detailed understanding of user needs. This step is an essential foundation for establishing the

basis for analyzing software development business estimates.

Figure 2. Use case diagram PIAUD portal

After identifying the activities of each actor, the next step is to detail these activities and categorize

them according to the elements of the Function Point: External Inputs (EI), External Outputs (EO), External

Inquiries (EQ), Internal Logical Files (ILF), and External Interface Files (EIF). This process involves careful

analysis of how each activity interacts with the system [22]. For example, activities that send data to a system

Jayadi et.al/ J. Soft Comput. Explor., Vol. 5, No. 1, Maret 2024: 1-8 5

are classified as EI, while activities that generate data or reports from the system are classified as EO. EQ is

identified from activities that request information from the system without significant data changes. ILF and

EIF are associated with the management and interaction of the internal and external data [23].

The third step is to calculate the values for each EI, EO, EQ, ILF, and EIF based on their complexity:

Simple, Average, and Complex. This calculation requires an assessment of each element based on factors such

as the amount of data involved, interactions with other features, and processing needs. The details of the

classification are in Table 2. Simple Complexity is usually given to more direct activities requiring less data

processing. In contrast, Complex is given to more complicated activities involving various elements of the

system or require more complex processing logic. This calculation provides the unadjusted function point

(UFP) figure, which forms the basis for estimating further development efforts. This step is essential to ensure

that the effort estimate reflects the true complexity of the functional requirements [24].

After determining the level of complexity for each External Input (EI), External Output (EO), External

Inquiry (EQ), Internal Logical File (ILF) and External Interface File (EIF), the study proceeded to calculate

Unadjusted Function Points (UFP) [25]. This step aggregates points from all function elements based on their

complexity. The UFP gives a rough idea of the functional size of the software developed using Formula 1. The

results of the UFP assessment are presented in Table 3.

Table 2. Component classification
Actor Activities EI Cpl

EI
EO Cpl

EO
EQ Cpl

EQ
ILF Cpl

ILF
EIF Cpl

EIF

Admin Login 1 S 0 1 S 0 0

Manage Profile 1 S 1 S 1 S 1 S 0
Manage Lecturer

Members

1 S 2 S 1 S 1 S 0

Manage Study
Program Members

1 S 2 S 1 S 2 S 0

Manage Portal

Components

1 S 1 S 1 S 2 S 0

Manage Portal

Content

1 S 1 S 1 S 2 S 0

Lecturer Members Login 1 S 0 0 1 S 0
Manage Profile 1 S 1 S 1 S 1 S 0

Study Program Members Login 1 S 0 0 1 S 0

Manage Profile 1 S 1 S 1 S 1 S 0
Guest, Admin, Lecturer

Member, Study Program

Member

Portal Access 1 S 1 S 1 S 1 S 0

S = Simple, A = Average, C = Complex

Table 3. Value unadjusted function point (UFP)
Complexity w Simple Total w Average Total w Complex Total UFP

External Inputs (EI) 3 11 4 0 6 0 33
External Outputs (EO) 4 8 5 0 7 0 32

External Inquiries (EQ) 3 9 4 0 6 0 27

Internal Logical Files (ILF) 7 10 10 0 15 0 70
External Interface Files (EIF) 5 0 7 0 10 0 0

Total UFP 162

TCF = 0.65 + 0.01 × ∑CF = 0.65 + 0.01 × 11 = 0.76

AFP = UF P× TCF = 0.76 x 162 = 123.12

The next step is to calculate the effort, expressed in man-hours, required for software development.

This calculation is based on AFP and multiplied by Productivity Rate (PR)=15 as in Formula 4 [17].

Effort (man-hours) = 123.12×15 = 1846.8

Finally, the study evaluated this effort estimation using various metrics such as Mean Magnitude of

Relative Error (MMRE), Median Magnitude of Relative Error (MMER), Balanced Relative Error (BRE), Mean

Inverted Balanced Relative Error (MIBRE), Mean Absolute Error (MAE) and Root Mean Square Error

(RMSE). These metrics are used to measure the accuracy of the effort estimate, providing a view of how close

the estimate is to the actual effort known to be 1228-man hours. This evaluation is important for the validation

of the estimation methods used and to determine areas that require adjustment or improvement in the research

methodology. The evaluation results are as shown in Table 5.

6 Jayadi et al. / J. Soft Comput. Explor., Vol. 5, No. 1, Maret 2024: 1-8

Table 5. Value Evaluation
Matrix Value

Mean Magnitude of Error Relative (MMER) 0.34

Mean Magnitude of Relative Error (MMRE) 0.50
Mean Absolute Error (MAE) 618.80

Mean Balanced Relative Error (MBRE) 0.50

Mean Inverse Balanced Relative Error (MIBRE) 0.34
Root Mean Squared Error 618.80

Based on the application of the proposed methodology, the estimated interim results of the effort are

as follows. Unadjusted Function Point (UFP) of 162 Technical Complexity Factors (TCF) of 11, Adjusted

Function Point (AFP) of 123.12, and estimated effort in working hours (Man Hour) of 1846.8. It should be

noted that the actual effort, that is, the actual effort required in the project, is 1228 hours [18], [19].

The results of the effort estimation show that the estimates generated from this methodology are

significantly different from the actual effort required in the project. MMRE, MdMRE, and other evaluation

metrics will be used to evaluate the estimation error rate in greater depth. These results will be analyzed to

identify patterns in estimation error and the factors that influence it [26]. Furthermore, these results provide

insight into the estimated level of complexity of the project. A TCF of 11 indicates significant technical and

environmental factors that affect the project effort. This analysis provides a deeper understanding of what may

have been overlooked in previous attempts to estimate [27].

These interim results imply that the proposed estimation method requires further review to improve

the accuracy of effort estimates. The significant difference between the estimation and the actual effort

indicates the potential to improve the methodology or consider additional factors that influence the estimates.

This stage concludes that this research has provided an initial understanding of using use case diagrams in

software business estimation, but further improvements are needed to achieve more accurate estimates.

Limitations in this study include assumptions made in using the methodology and limitations in the

data used for testing. Acknowledging these limitations is essential to provide context to the reader and avoid

misinterpreting the results. As a next step, the study will further analyze the estimation errors, focusing on

identifying factors that influence significant differences between estimates and actual effort. The follow-up

research plan also includes an exploration of methods of improvement or adjustment in the proposed estimation

approach. This aims to improve the accuracy and relevance of software business estimation in developing use

case diagram-based development.

Perhaps this result is not better than other studies that use development from other Use Case Points

such as Fuzzy [28] or in-depth improvisation in the calculation of the Use Case Point itself [18], [29]. It is

critical to keep in mind that creating a more accurate software effort estimating approach begins with these

preliminary results. This research can significantly improve software effort estimation techniques by providing

more precise and reliable results with further in-depth investigation and review.

4. CONCLUSION

The original goal of this research was to combine Function Point measurements with Use Case

Diagrams to create a more precise method for estimating software effort. However, interim findings indicate

that more adjustments to effort estimations may be necessary to achieve the desired degree of accuracy.

However, these results motivate more research to create more effective techniques. This investigation has

revealed several areas where the suggested estimating approach needs to be strengthened. Prospects for

development include additional research into the variables influencing estimation mistakes, improved usage of

use case diagrams, and more thorough modeling of the technical complexity of the project. Our goal is to make

this method better over time so that it may be used for software business estimation.

This research not only develops but also provides avenues for further application in routine software

development. Software development organizations can implement this strategy to improve their project

planning and management by gaining a deeper understanding of project complexity. Applying this research

can help organizations avoid underestimating or overestimation of effort that often leads to problems in

software development.

Jayadi et.al/ J. Soft Comput. Explor., Vol. 5, No. 1, Maret 2024: 1-8 7

CREDIT AUTHORSHIP CONTRIBUTION STATEMEN

Author1: Conceptualization, Methodology, Software, Project administration. Author 2: Review & editing.

Author 3: Review & editing.

REFERENCES
[1] A. A. Nurdin, G. N. Salmi, K. Sentosa, A. R. Wijayanti, and A. Prasetya, “Utilization of Business Intelligence in Sales

Information Systems,” J. Inf. Syst. Explor. Res., vol. 1, no. 1, pp. 39–48, Dec. 2022, doi: 10.52465/joiser.v1i1.101.

[2] R. Naufalia, S. A. Usman, and C. L. Bambang, “Analysis and development of company business processes using business
process model notation (case study of PT Datacomm Diangraha),” J. Soft Comput. Explor., vol. 2, no. 2, Sep. 2021, doi:

10.52465/joscex.v2i2.48.

[3] A. Purwanto and L. Parningotan Manik, “Software Effort Estimation Using Logarithmic Fuzzy Preference Programming and
Least Squares Support Vector Machines,” Sci. J. Informatics, vol. 10, no. 1, pp. 1–12, 2023, doi: 10.15294/sji.v10i1.39865.

[4] S. S. Ali, J. Ren, K. Zhang, J. Wu, and C. Liu, “Heterogeneous Ensemble Model to Optimize Software Effort Estimation

Accuracy,” IEEE Access, vol. 11, pp. 27759–27792, 2023, doi: 10.1109/ACCESS.2023.3256533.
[5] A. Y. P. Putri, “Modifikasi Metode Function Point Dengan Menambahkan Kompleksitas Proses Bisnis Pada General System

Characteristics Untuk Estimasi Biaya Perangkat Lunak,” Institut Teknologi Sepuluh Nopember, 2018.

[6] M. Lefley and M. J. Shepperd, “Using Genetic Programming to Improve Software Effort Estimation Based on General Data
Sets BT - Genetic and Evolutionary Computation — GECCO 2003,” E. Cantú-Paz, J. A. Foster, K. Deb, L. D. Davis, R. Roy,

U.-M. O’Reilly, H.-G. Beyer, R. Standish, G. Kendall, S. Wilson, M. Harman, J. Wegener, D. Dasgupta, M. A. Potter, A. C.

Schultz, K. A. Dowsland, N. Jonoska, and J. Miller, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 2477–2487.
[7] Z. Polkowski, J. Vora, S. Tanwar, S. Tyagi, P. K. Singh, and Y. Singh, “Machine Learning-based Software Effort Estimation:

An Analysis,” in 2019 11th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), IEEE, Jun.
2019, pp. 1–6. doi: 10.1109/ECAI46879.2019.9042031.

[8] S. Febriyanti and S. Solehatin, “Application design for web-based car services to increase work time estimates,” J. Student Res.

Explor., vol. 2, no. 1, pp. 11–21, Jan. 2024, doi: 10.52465/josre.v2i1.231.
[9] A. B. Nassif, M. Azzeh, A. Idri, and A. Abran, “Software Development Effort Estimation Using Regression Fuzzy Models,”

Comput. Intell. Neurosci., vol. 2019, pp. 1–17, Feb. 2019, doi: 10.1155/2019/8367214.

[10] B. K. Park, S. Y. Moon, and R. Y. C. Kim, “Improving Use Case Point (UCP) Based on Function Point (FP) Mechanism,” in
2016 International Conference on Platform Technology and Service (PlatCon), IEEE, Feb. 2016, pp. 1–5. doi:

10.1109/PlatCon.2016.7456803.

[11] R. S. Dewi, A. P. Subriadi, and Sholiq, “A Modification Complexity Factor in Function Points Method for Software Cost
Estimation Towards Public Service Application,” Procedia Comput. Sci., vol. 124, pp. 415–422, 2017, doi:

10.1016/j.procs.2017.12.172.

[12] J. Rashid, S. Kanwal, M. Wasif Nisar, J. Kim, and A. Hussain, “An Artificial Neural Network-Based Model for Effective
Software Development Effort Estimation,” Comput. Syst. Sci. Eng., vol. 44, no. 2, pp. 1309–1324, 2023, doi:

10.32604/csse.2023.026018.

[13] B. Kumar, “Function point analysis based effort estimation and prediction using Lagrange’s interpolation in Agile software
development,” Math. Eng. Sci. Aerosp., vol. 14, no. 2, pp. 395–416, 2023.

[14] H. T. Hoc, V. Van Hai, H. L. T. K. Nhung, and R. Jasek, “Improving the Performance of Effort Estimation in Terms of Function

Point Analysis by Balancing Datasets,” 2023, pp. 705–714. doi: 10.1007/978-3-031-21435-6_60.
[15] J. T. M. Dhas and J. Midhunchakravarthy, “Modern Metrics (MM): Software size estimation using function points for artificial

intelligence and data analytics applications and finding the effort modifiers of the functional units using indian software

industry,” J. Discret. Math. Sci. Cryptogr., vol. 26, no. 3, pp. 629–640, 2023, doi: 10.47974/JDMSC-1734.
[16] A. Farhan, “Penggunaan metode use case point activity-based costing dan adjusted function point untuk estimasi biaya

pembuatan software,” 2021. [Online]. Available:

https://repository.uinjkt.ac.id/dspace/handle/123456789/65074%0Ahttps://repository.uinjkt.ac.id/dspace/bitstream/123456789/
65074/1/ANDRIA FARHAN-FST.pdf

[17] R. S. Dewi, T. W. Andari, A. P. Subriadi, and Sholiq, “Function Points Method in Game Casual Context,” in 2018 International

Conference on Electrical Engineering and Computer Science (ICECOS), IEEE, Oct. 2018, pp. 367–372. doi:
10.1109/ICECOS.2018.8605188.

[18] P. Jayadi, A. C. Aria Bima, Y. P. Yudha, and Kelik Sussolaikah, “End User Development pada Use Case Point untuk peningkatan

Estimasi Perangkat Lunak,” TEMATIK, vol. 10, no. 1, pp. 74–82, Jun. 2023, doi: 10.38204/tematik.v10i1.1289.
[19] P. Jayadi, Juwari, L. Azis, and K. Sussolaikah, “Estimasi Pengembangan Perangkat Lunak Dengan Use Case Size Point,” vol.

3, pp. 332–340, Mar. 2023, doi: 10.47065/bit.v3i1.408.

[20] N. Marcheta, “Effort Estimation Modeling Of E-Government Application Development Using Function Points Based On Tor
And Srs Document,” J. Inf. Technol. Its Util., vol. 3, no. 1, p. 5, Aug. 2020, doi: 10.30818/jitu.3.1.2839.

[21] M. Baiquni, R. Sarno, Sarwosri, and Sholiq, “Improving the accuracy of COCOMO II using fuzzy logic and local calibration

method,” in 2017 3rd Int. Conf. Sci. Inf. Technol. (ICSITech), IEEE, Oct. 2017, pp. 284–289. doi:
10.1109/ICSITech.2017.8257126.

[22] H. Hamzah, R. Saptono, and R. Anggrainingsih, “Development of Software Size Estimation Application using Function Point

Analysis (FPA) Approach with Rapid Application Development (RAD),” ITSmart J. Teknol. dan Inf., vol. 5, pp. 96–103, Dec.

2016, doi: 10.20961/its.v5i2.1988.

[23] S. Sariyanti and A. Ardiansyah, “Pengembangan Kakas Estimasi Perangkat Lunak dengan Function Point dan Use Case Point

untuk Praktikum Rekayasa Perangkat Lunak,” J. Sarj. Tek. Inform., vol. 6, no. 2, pp. 89–97, 2018, doi:
10.12928/jstie.v6i2.15233.

[24] Sholiq, R. S. Dewi, and A. P. Subriadi, “A Comparative Study of Software Development Size Estimation Method: UCPabc vs

Function Points,” Procedia Comput. Sci., vol. 124, pp. 470–477, 2017, doi: 10.1016/j.procs.2017.12.179.
[25] F. A. Juyuspan and A. Hidayati, “Estimasi Pengelolaan Suatu Proyek Dalam Pengembangan Perangkat Lunak Menggunakan

Analisa Function Point,” J. SimanteC, vol. 5, no. 2, pp. 85–92, 2016.

[26] S. Shukla and S. Kumar, “Towards ensemble-based use case point prediction,” Softw. Qual. J., vol. 31, no. 3, pp. 843–864, Sep.
2023, doi: 10.1007/s11219-022-09612-2.

[27] J. F. Vijay, “Retraction Note: Enrichment of accurate software effort estimation using fuzzy-based function point analysis in

8 Jayadi et al. / J. Soft Comput. Explor., Vol. 5, No. 1, Maret 2024: 1-8

business data analytics,” Neural Comput. Appl., vol. 35, no. 6, pp. 4797–4797, Feb. 2023, doi: 10.1007/s00521-022-08159-4.

[28] M. Hariyanto and R. S. Wahono, “Estimasi Proyek Pengembangan Perangkat Lunak Dengan Fuzzy Use Case Points,”

IlmuKomputer.com J. Softw. Eng., vol. 1, no. 1, pp. 54–63, 2015.
[29] A. Srivastava, S. S.K, and S. Q. Abbas, “Advancement Of UCP With End User Development Factor: AUCP,” Int. J. Softw. Eng.

Appl., vol. 6, no. 2, pp. 01–10, Mar. 2015, doi: 10.5121/ijsea.2015.6201.

