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 Reinforcement learning is a branch of artificial intelligence that trains 

algorithms using a trial-and-error system. Reinforcement learning interacts 

with its environment and observes the consequences of its actions in response 

to rewards or punishments received. Reinforcement Learning uses information 

from every interaction with its environment to update its knowledge. The 

problem identified from this research is the lack of consistency, which is not 

always the same for Non-Player Characters (Agents) in the process of 

exploring an environment (Game environment). This research uses the 

Software Development Life Cycle (SDLC) Waterfall model method to train 

Non Player Characters (Agents) in the Amc Dash Mark I Game which uses 

the Deep Q Network (DQN) algorithm in several stages. Training results show 

improvements in model performance over time. The average duration of the 

episode and average reward episode showed an increase of 7.75 to 24.7, while 

the exploration rate decreased to 0.05. This indicates that the model has 

experienced learning and is improving to achieve better rewards by 

performing fewer actions. The lower loss also shows that the model has 

succeeded in reducing prediction errors and improving prediction capabilities. 
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1. INTRODUCTION 

In the beginning, computers were only used as calculating machines. However, as time passes, the 

role of computers is increasingly dominant in human life. Now, computers are not only used as calculating 

machines, but are also expected to be able to do all the tasks that humans can do. Technological developments 

are increasingly rapid [1], with new innovations continuing to emerge in various aspects of life, including 

different fields. Technology is something that needed by human [2]. Not only is it used to make human work 

easier, technology also continues to develop in the entertainment sector, such as games that are currently 

increasingly popular and continue to develop rapidly [3]. The  emergence  of online  gaming  through  the  

internet  has  gained widespread popularity and addiction among individuals, particularly teenagers [4]. 

A game or game is a fun medium that does not make people who play it feel bored [5]. Games have 

become an important part of the lives of young teens and adults, both boys and girls, from various social and 

economic backgrounds. Games are available at various places and are often played by teenagers; up to half of 

all teenagers report having played a game in the previous day. Those who play it regularly usually play it for 

https://creativecommons.org/licenses/by-sa/4.0/
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at least one hour per day [6]. In games, artificial intelligence is often used to challenge players. This challenge 

can be an opportunity to fight against a machine that has certain intellectual abilities in thinking, so players 

don't need to look for other opponents if they want to play. An efficient and effective algorithm must support 

the thinking skills applied in the game, taking into account the applicable rules [7]. One of the algorithms 

commonly used in games is the Deep Q Network (DQN) algorithm.   The correlation between DQN and 

artificial intelligence lies in the way DQN learns and makes decisions in dynamic environments, such as games. 

DQN adapts the concept of reinforcement learning to allow agents (in this case, usually NPC characters in 

games) to learn from interactive experiences with the game environment.  

The field of artificial intelligence (AI) is a part of computer science that aims to make machines, such 

as computers, have the ability to complete tasks with intelligence or even exceed human capabilities in some 

aspects. In game development, one of the challenges that arises is creating a control system for non-player 

character (NPC) or Agent characters that is capable of realistic and responsive behavior. This agent is an 

autonomous entity in a virtual world, such as in a game or virtual reality, that plays the role of a character in a 

story or game scenario. The main challenge in this case is giving Agents the ability to perform improvised 

actions, which differentiates them from characters in animated films that have rigidly programmed actions, or 

"avatars" in games that are controlled directly by the player in real time [8].  

The development movement of agents manually requires quite a lot of time and effort, especially if 

there are a lot of agents in the game. In recent years, reinforcement learning has become one of the techniques 

used to overcome this problem [9]. Reinforcement learning is a branch of artificial intelligence that trains 

algorithms using a trial and error system [10]. Reinforcement learning interacts with its environment and 

observes the consequences of its actions in response to rewards or punishments received [11]. Reinforcement 

learning uses information from every interaction with its environment to update its knowledge [12]. 

Meanwhile, according to [13] Reinforcement learning is a type of machine learning where agents learn 

something by performing certain actions and seeing the results of these actions and trying to maximize the 

rewards received through interaction with the environment in the form of rewards with negative or positive 

values [14]. According to previous research, several algorithms, such as Deep Deterministic Policy Gradient 

(DDPG) and Duel DQN, can be implemented for this game and extensively compared with the aforementioned 

results [12], [15]. Another important observation is that the speed of obstacles increases as the score increases, 

so the game can be divided into stages. Reinforcement learning models are generally called agents because 

they learn to behave in a given environment by executing random actions and getting rewarded after each. Each 

stage receives input from the previous stage but is trained individually [10], [11]. Gap analysis highlights the 

lack of realistic movement control in NPC characters and a less adaptive response to the game environment. 

This research sharpens the focus on applying the reinforcement learning method with the Deep Q Network 

algorithm to overcome these weaknesses, making NPC movement control more intelligent, responsive, and 

adaptive in the AMC Dash Mark I game. This provides an important innovation in providing a more immersive 

and immersive gaming experience. challenging for the players. The uniqueness of this research is the approach 

used to overcome the NPC movement control problem in the AMC Dash Mark I game. The use of the Deep Q 

Network algorithm and the application of reinforcement learning provide a strong foundation for producing 

NPCs that are more adaptive, responsive, and able to learn the game environment better. well, which perhaps 

hasn't been done so clearly before in the game. The goal in this research is to further improve the performance 

of the Reinforcement Learning algorithm and reduce the variance in scores. 

 

 

2. METHOD 

In this research, it can be illustrated in Figure 1 as the stages that must be passed to complete the 

research. 

 

 
Figure 1. Research methodology 

This research uses secondary methods that utilize existing data, namely those sourced from 

https://github.com/nicknochnack/DinoAI/tree/main. The approaches used include requirements gathering, 

system design, testing, and implementation which can be explained as follows [3], [16]: 

1) Requirements gathering is the process of identifying, understanding, and documenting the needs that must 

be met by a software system or project. 

2) System design is the process of designing the structure, components, and features of a software system or 

information system as a whole. The goal of system design is to produce a clear and structured plan for 

how the system will function, interact, and meet the needs of users and stakeholders. 

Requirement 
Gathering & 

Analysis
System design Testing Implementation
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3) Testing is an important process in developing software or information systems, which aims to evaluate the 

quality, performance, and reliability of the system. Testing is carried out to ensure that the system functions 

as expected, meets user requirements, and works well in various situations and conditions. 

4) Implementation is the stage in the software or information system development cycle where the previously 

designed system design is converted into executable program code.   

 

Game 

Games are a form of recreational or competitive activity that usually involves players in an interactive 

environment, either virtually (video games) or in real life. Games have certain rules, goals that must be 

achieved, and often offer challenges or entertainment. The goals expressed in games can vary, including 

education, entertainment, and simulation [17]. In the context of video games, there are various genres such as 

action games, adventure, strategy games, RPG (role), puzzle games, and many more. Each genre usually has 

different rules, game mechanics, and goals. The main goal of the game is to please the player, although some 

games also provide challenging challenges or specific goals that must be achieved. Most games rely on rules 

and interactions between the player or players and their virtual environment to create an entertaining or 

educational experience [18]. 

 

Reinforcement Learning 

Reinforcement Learning (RL) is a machine learning paradigm that studies how agents can perform 

actions in an environment to achieve certain goals that maximize rewards [19]. The reinforcement learning 

process occurs through iteration in which the agent performs actions in the environment, receives feedback 

(rewards) for these actions, and gradually updates the action decisions taken based on the experience gained 

from interactions with the environment [14]. The aim of reinforcement learning is to develop optimal policies, 

namely rules or strategies that allow agents to take action to maximize the total reward received in the long 

term [15]. 

 

Deep Q Network Algorithm 

The Deep Q Network (DQN) is a reinforcement learning algorithm developed to overcome complex 

problems in machine learning [20]. This algorithm is a combination of reinforcement learning with a deep 

artificial neural network [21]. The essence of the DQN algorithm is to utilize an artificial neural network to 

model the Q function, which estimates action values in an environment or game based on states [22]. This Q 

value measures how profitable an action is in a particular situation. This is represented in the following equation 

[23]: 

 

𝑌𝑘 = 𝑟 + 𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠
′, 𝑎′; 𝜃𝑘

−)    (1) 

 

AMC Dash Mark I 

Amc Dash Mark I is a platformer game that takes reference from the geometry dash game as seen in 

Figure 2   Geometry dash. This game has a faster rhythm, and the agent being played is a square with the main 

goal of reaching the end of the level without colliding with any obstacles [12]. This game requires precision 

and timing to jump, bounce, and avoid various obstacles such as sharp obstacles, snares, and dangerous holes 

[24]. The Geometry Dash game offers a variety of game modes, including normal mode, where the player must 

complete the level in the correct way, and practice mode, which allows the player to practice and learn obstacle 

patterns before attempting the real level [25]. 

 

 
Figure 2. Geometry dash 
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3. RESULTS AND DISCUSSIONS 

Requirements Gathering & Analysis 

The problem with this research is the lack of consistency, which is not always the same for non-player 

Characters (Agents) in the process of exploring an Environment (Game environment). 

 

System Design 

In the system design section, a custom environment will be created that allows Non-Player Characters 

(Agents) to interact with their environment. 

 

Creating the AMC dash mark i game 

The following is the process of making the AMC Dash Mark I Game, which goes through several 

stages including: First Import Game Library: In the first process of creating the Amc Dash Game, several 

libraries are imported, as seen in figure 3.a Import game library. The code in Figure 3.a imports all the libraries 

needed to develop the Game using pyGame and performs CSV data manipulation if needed [26]. Second Main 

Player Class: The code in figure 3.b PyGame Configuration is initialization and some initial configuration for 

developing a game using pyGame [27]. 

 

 
             (a)                          (b) 

Figure 3. a. Import game library and b. Configuration 

Third Obstacle Class: The code in Figure 4.a defines the Draw class, which is a subclass of 

pyGame.sprite.Sprite. This class is responsible for drawing objects in the game. Fourth Global Variables: The 

code given in Figure 4.b is part of initializing several variables that will be used in the game using the pyGame 

module. 

 

 
                                                           (a)                                                            (b) 

Figure 4. a. Class draw and b. Global variables 

Creating a reinforcement learning model 

After creating the game that you want to test, the process is then carried out to create a reinforcement 

learning model that will be used to train the Game that was created previously. The steps for creating a 

Reinforcement Model are as follows. Import Library, in the first process of system design, here we will import 

several libraries, as seen in Figure 5.a. The code only contains library imports and does not contain 

implementation or special functions of the library. In the second stage, Create an Environment In this stage, a 

custom environment is created that has the task of capturing the screen, as seen in Figure 5.b. The codes in 

Figure 5.b are used to initialize the game environment by setting the observation space, the action space, and 

other necessary parameters, such as the location of the screenshot and the game in the screenshot. 
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       (a)                                                                                (b) 

Figure 5. a. Import library and b. Class web game 

In the third stage of creating a Deep Q Network Model in creating a DQN model, several libraries are 

imported from Stable Baseline 3 as seen in Figure 6. The code in Figure 6, is the import and use of several 

modules in the "stable_baselines3" library to manage file paths and create custom callbacks to save the model 

during training as well as for the implementation of the Deep Q-Network (DQN) algorithm in reinforcement 

learning. 

 

 
Figure 6. Import library stable baselines3 

Testing 

In the testing process, the non-player character (Agent) will be trained to pass through obstacles that 

have been created in the AMC Dash Mark I Game. At this stage, the game is placed in a screenshot area that 

has been previously designed, as seen in Figure 7. marked with a dotted line. broken off in green. 

 

 
Figure 7. Game positioning 

Implementation 

After carrying out the system design, the implementation stage is then carried out, where the system 

that has been created will be implemented in the Amc Dash Mark I Game to get the results of tests that will 

be carried out on Non-Player Characters (Agents) in the Game. After the testing process, the system is then 

implemented into the AMC Dash Mark I game by calling the code in Figure 8. 
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Figure 8. Best model 

The code in Figure 8. will reflect the final state of the DQN model when it stops training after being 

trained for 8000 iterations (epochs) or episodes. Therefore, this model can be used to continue further training 

or used for other purposes such as evaluating performance, policies, or strategies that have been learned by the 

model. Next, the non-player character (Agent) will walk past the spikes and blocks as seen in Figure 9. 

 

 
Figure 9. Amc dash mark I 

Then the results obtained by the non-player character (Agent) while passing through the spikes and 

blocks are shown in Figure 9. 

 
Figure 10. Total reward 

The following is an explanation for each episode which can be seen in Figure 10: 

1) Episode 0: The total reward obtained in this episode is 12. In this episode, the model has taken 1 

random action. A high total reward indicates that the model succeeded in achieving good rewards in 

this episode. 

2) Episode 1: The total reward obtained in this episode is 8. In this episode, the model also takes one 

random action. Although the total rewards were slightly lower than in the previous episode, this could 

still be considered a good performance. 

3) Episode 2: The total reward obtained in this episode is 12. In this episode, the model no longer 

performs random actions (Z=0). The model may have used the policies it learned during training and 

succeeded in achieving good rewards. 

4) Episode 3: The total reward obtained in this episode is 12. In this episode, the model has taken 1 

random action. Despite this, the model still achieves a high total reward as in the previous episode. 
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5) Episode 4: The total reward obtained in this episode is 5. In this episode, the model no longer performs 

random actions (Z=0). A lower total reward may indicate that the model is having difficulty in the 

given task or that there is still room for improvement in the policies it has learned. 

In experiments carried out for the implementation of the reinforcement learning system using the deep 

q network algorithm in the amc dash mark i game, a significant increase in the performance of NPC movement 

control was seen. The implementation of Reinforcement Learning using the Deep Q Network (DQN) algorithm 

in the AMC Dash Mark I game succeeded in increasing the NPC's ability to adapt to the game environment, 

provide smarter responses, and show clear progress over time. 

 

 

4. CONCLUSION 

This research focuses on the application of the reinforcement learning system with the Deep Q 

Network algorithm in the AMC Dash Mark I game. The results show an increase in the consistency and 

performance of Non-Player Characters (NPC) in the game. The application of the SDLC (Software 

Development Life Cycle) waterfall model to train NPCs shows a gradual increase in the quality of NPC 

behavior, as evidenced by changes in average episode length, average reward episodes, and a decrease in 

exploration rate. This confirms that this learning model is effective in improving NPC performance. 

Training results show improvements in model performance over time. The average duration of the 

episode and average reward episode showed an increase of 7.75 to 24.7, while the exploration rate decreased 

to 0.05. This indicates that the model has experienced learning and is improving to achieve better rewards by 

performing fewer actions. The lower loss also shows that the model has succeeded in reducing prediction errors 

and improving prediction capabilities. Then the results are implemented, and the results are obtained. The 

results show that the lowest total reward is 5 and the highest reward is 24. These results show that during the 

100 experimental episodes, the non-player character (Agent) has not been consistent in taking more optimal 

actions based on the Q value given. has been studied. 

The findings of this research provide a strong foundation for further development in optimizing NPC 

performance in games. The next steps could include using alternative algorithms such as the deep deterministic 

policy gradient (DDPG) or other methods to compare and improve NPC performance. Additionally, the further 

application to other games or adaptation of this model for more complex scenarios could be prospective next 

steps. Further possible applications involve the development of more adaptive, intelligent and responsive NPC 

systems in demanding gaming contexts. 
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