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Eye diseases, if not diagnosed early, can lead to severe visual impairments,
including blindness, posing significant challenges in clinical practice.
Traditional diagnostic methods often face limitations in accuracy and
efficiency, necessitating advanced solutions. This research aims to address
these challenges by employing deep learning with Convolutional Neural
Networks (CNN) enhanced by transfer learning to classify eye diseases. The
study utilized a dataset of 4,217 images categorized into four classes: Normal
(1,074 images), Glaucoma (1,007), Cataract (1,038), and Diabetic
Retinopathy (1,098). The CNN model, implemented in TensorFlow, was
trained and evaluated to achieve high accuracy. The results indicate a
classification accuracy of 95%, with particularly outstanding performance
for Diabetic Retinopathy, achieving 100% precision and recall. Compared to
previous studies, such as Seetha et al. (2022) and Sarki et al. (2021), which
reported 75% and 81.33% accuracy, respectively, this study demonstrates a
significant improvement. These findings highlight the model's robustness in
enhancing early detection and clinical decision-making in ophthalmology,
with future work focusing on expanding the dataset and exploring more
advanced deep learning architectures to improve performance further.

This is an open access article under the CC BY-SA license.

00

Corresponding Author:
Christy Atika Sari

Study Program in Informatics Engineering, Faculty of Computer Science

Universitas Dian Nuswantoro

Imam Bonjol 207, Semarang, 50131, Central Java, Indonesia
Email: christy.atika.sari@dsn.dinus.ac.id
https://doi.org/10.52465/joscex.v5i4.493

1. INTRODUCTION

Eye disease are disorders that affect the eyes and vision in temporary or permanent ways, potentially
creating discomfort, impaired sight, and in some cases, complete blindness if left untreated [1]. Common eye
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conditions include cataracts, where the eye lens becomes cloudy; glaucoma, characterized by increased eye
pressure damaging the optic nerve; and macular degeneration, which affects the retina's center, reducing
sharp vision [2]. Other conditions, such as diabetic retinopathy, may be due to diabetic complications causing
destruction of blood vessels in the retina [3], [4]. Early detection and treatment can prevent long-term loss of
vision, and with the advancement in diagnosis methodologies, even machine learning techniques have
become ever so important to diagnose and manage.

It is important not only because it is one of the causes of reduced quality of life, but also because
most the eye diseases develop gradually, and their beginning is very often symptom-free [5]. Therefore, early
diagnosis is an important challenge for clinical practice. For instance, glaucoma is often termed the "silent
thief of sight" because many times patients may not notice that they have lost vision. Similarly, many other
serious eye conditions, such as diabetic retinopathy, are often asymptomatic at their onsets but might
subsequently lead to irreversible damage unless treated timely and appropriately [6]. While older adults are
mainly affected by macular degeneration, it also predominantly causes central vision loss that is debilitating
to essential tasks, including reading and driving. These diseases are even more insidious because they usually
progress to an advanced stage before symptoms appear and diagnosis is made. Although current techniques
for disease diagnosis are developing, there is often a limitation of specialists and variable human
interpretations of medical images.

The problem of late and often incorrect early detection of eye diseases, in this perspective, needs a
profound software solution focused on automatic deep learning models using Convolutional Neural Networks
in structures such as TensorFlow. Such models, when trained with major datasets of eye images, can
recognize diseases such as glaucoma, diabetic retinopathy, and macular degeneration long in advance before
their symptoms manifest well [7], [8]. Clinical-diagnostic systems with integrated models, like these,
therefore, raise the degree of precision in diagnosis and reduce variability that may be introduced by
subjective human assessment [9]. These technologies can also be implemented in telemedicine or even on
cell phones to easily screen for conditions in remote or resource-poor areas without specialist care. This will
not only ensure early diagnosis but also allow for continuous improvements as new data are introduced into
the models, further increasing the precision and reliability of the system over time [10]. This will enable, in
turn, real-time analysis, better clinical decisions, and have a significant reduction impact on the incidence of
preventable blindness and improvement in the patient's outcomes in conditions of complex eye diseases.

Recent advancement in the area, as related to the detection of a variety of eye ailments, has been by
deep CNN [11], whose role it is to scan medical images for disease-related patterns that may be impossible
for human observation. In application to the diagnosis of eye diseases, these deep CNN excel in processing
images of the retina while autonomously learning about important features such as those changing in the
optic nerve head structure due to glaucoma or the development of hemorrhages in diabetic retinopathy [12].
What is very special about ConvNet is that it can inherently learn the features most relevant visually without
necessarily being specified explicitly by making use of convolutional layers, pooling layers, and fully
connected layers [13]-[15]. That inherently suggests that CNN can be applied to most ocular diseases and a
variety of image modalities, which thus allows generalizing seamlessly across different populations of
patients and image sources. Further, CNN reduce dependence on human interpretation because, with the
offering of consistent and reproducible analysis, huge in a clinical environment, such skills are hardly
available. Its use optimizes the whole diagnosis process in diagnostic systems and finally creates an
opportunity for better treatment by making decisions more appropriately on time.

In study by Seetha et al. (2022) [16]proposed a holistic approach in tackling the challenges involved
in the diagnosis of diabetic retinopathy, a retinal disease wherein blood vessels in the tissues of the retina are
impaired. They noted in their work the serious effect of the disease should it not be identified and treated,
thus the need for comprehensive eye check-ups by ophthalmologists. While most of the earlier methods
involve several classification methodologies and machine learning algorithms, most of these techniques
require very intensive time consumption for both training and testing, and most of them are not validated on
diverse data sets. Authors focusing on filling these gaps concentrated on the development of an effective and
robust ensemble CNN classification model identifying the presence of diabetic retinopathy from fundus
images. They proposed a plain CNN and ensemble of CNN for classification and presented their respective
performances in terms of accuracy. The CNN ensembles performed better than the simple CNN with 75%
accuracy, which could be attributed to the extensive hyper-parameter tuning. Therefore, the ensemble CNN
proved to be a better classification approach for the diagnosis of diabetic retinopathy, hence enhancing early
intervention in the clinical practice of the condition.

Other related research by Sarki et al. (2021) [17] proposed a new dimension in diagnosing DED
through the development of a computer-aided diagnosis framework with deep learning techniques. They were
fully aware that only early treatment has the potential to optimize benefits while minimizing incidence
related to irrecoverable deterioration in vision. Thus, they have directed the focus of the study toward the use
of retinal fundus images as a major diagnostic technique for DED and other eye diseases. They thus noticed
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that such image detection was laborsome and time-consuming; hence, the development of more efficient
methods would be required. Further motivated by the significant progress demonstrated by deep learning in
clinical applications, the authors tried to address challenges about multiclass classification of the retinal eye
diseases-a domain of active research. The various studies conducted by the authors were implemented with a
novel CNN model in turn tested on a wide variety of retinal fundus images, sourced from openly available
datasets and annotated by ophthalmologists. In fact, these results proved that this model reached its best
performance with an accuracy of 81.33%, besides sensitivity and specificity of 100%. Thus, this model is
promising for the improvement in the early-detection process of the different DED types, enhancing
decision-making in ophthalmology.

On the other hand, Chakraborty et al. (2020) [18]proposed a new automatic diseased region
detection system using the Convolutional Neural Network in order to assist the doctors in the diagnosis with
scan and X-ray images. This shall improve decision-making with high precision in disease detection and
hence leverage the benefits of CNN, a subset of deep learning, which is a major domain under Artificial
Intelligence. CNN inherently require very little preprocessing compared to other deep learning algorithms,
and therefore they have become very suitable for application in medical image analysis. The authors
considered two different kinds of medical image data, namely, OCT images and chest X-ray images taken
among children within the age bracket of 1 to 5 years, as input for the classification process. The model CNN
was designed for the treatment and classification of medical images, where several performance metrics like
accuracy, loss, and training time have been measured with much care. After the implementation of this
system in hardware, some testing using already-trained models achieved a significant improvement of about
90% validation accuracy on the eye dataset and approximately 63% on the lung dataset. The proposed system
will help improve diagnostic accuracies for the medical fraternity while simultaneously helping reduce the
infant mortality rate due to pneumonia and helping early detection of eye diseases for better patient outcomes.

Based on relevant research carried out above, in this paper, TensorFlow will be employed in the
implementation of a Deep Learning Convolutional Neural Network for classification into a total of four
classes, namely, Cataract, Diabetic Retinopathy, Glaucoma, and Normal. CNN is a type of deep learning
model specifically designed for image processing, leveraging convolutional layers to automatically extract
features from input images. This enables the detection of intricate patterns critical for disease classification.
TensorFlow, a robust open-source framework, provides tools for building and training CNNs efficiently.
Drawing inspiration from the work of Seetha et al. (2022) [5], who realized better classification accuracy
using an ensemble CNN. Based on inspirations drawn from this research study, the application of some of the
techniques in improving diagnostic precision will be attempted. Additionally, the findings of Sarki et al.
(2021) [17]had good performance regarding identifying multiclass classification using deep learning methods,
it has motivated the approach followed in this work. Furthermore, Chakraborty et al. (2020) [18] presented
CNNs, which do not require much preprocessing and thus were considered suitable for different imaging
modalities. This is made real in the study through the adoption of the TensorFlow-based approach, which
actually gave a higher classifying accuracy than what was realized in previous studies. Thus, integrating
these insights into this research has been done to present an enhanced classification framework that may not
only enhance the early detection of eye-related pathologies but also support decision-making processes in
clinical practice for improved outcomes in ophthalmology.

2. METHOD

The process begins with a dataset containing four classes of retinal images, representing different eye
conditions. The dataset is split into training and validation subsets, with 80% of the data allocated for training
and 20% for validation. The training data is fed into the tensorflow model, where parameters are initialized to
optimize the model's learning capabilities. The trained model is then evaluated using the validation data to
assess its accuracy and effectiveness in classifying the images correctly. After training, the trained model
undergoes the classification phase, where it predicts the class of each input image. The model’s performance
is further analyzed by a confusion matrix, which provides a detailed breakdown of classification accuracy
across the four classes. This workflow ensures a structured approach to developing a reliable model for eye
disease classification based on retinal images. Figure 1 illustrates the research methodology flow for the
classification of eye diseases using a tensorflow-based deep learning model.
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Figure 1. Research Flow Methodology
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Figure 2. Sample Datasets

For this dataset, it will contain normal and three major classes of eye diseases, namely glaucoma,
cataract, and diabetic retinopathy images, in total 4217. It includes 1074 samples as Normal, 1007 samples as
Glaucoma, 1038 samples as Cataract, and 1098 samples as Diabetic Retinopathy. Figure 3 (b) represents that
each class is unequal, which corresponds to the natural occurrence of this disease in the dataset. Figure 3 (c)
gives an idea of the total samples available in each class. Figure 2 shows sample images from the dataset, and
there is great variability in the appearance and characteristics of each of the eye diseases. A dataset like this is
used for training and evaluation in the classification model. Each image adds up and forms a discriminative
hyper-plane for classifying any new observation amongst these four classes.
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From the information on the datasets, the dataset applied in this research is quite balanced, as the total
samples for all the four classes- Normal, Glaucoma, Cataract, and Diabetic Retinopathy-are quite comparable
in number. The closeness of the distribution reduces the chances of class imbalance, one of the problems that
are usually seen in medical image datasets, because some conditions may be represented with fewer images.
Due to this fact, no extra over-sampling should be done through SMOTE - Synthetic Minority Over-sampling
Technique - or any balancing technique, as in this way the model will not be biased regarding class
imbalance. For the most part, none of these extra operations concerning balancing is really time-consuming;
hence, the raw data will be allowed to feed the deep learning model directly, keeping the pipeline pretty
simple and straightforward. This dataset is available on Kaggle:
https://www.kaggle.com/code/mojtabaameri/eye-diseases-classification-by-tensorflow-94-9-ac#eye-diseases-
classification, It really builds a perfect foundation to train a quite strong classification model, as it exactly
represents each class without extensive adjustment, hence improving model training efficiency and reducing
unnecessary preprocessing interventions.

2.2 Initialization of Model Tensor Flow and Transfer Learning

A transfer learning model was thus developed, using TensorFlow, to classify eye disease images
based on the four classes of images [19]. Our model architecture has each convolution block consisting of
convolutional layers following max-pooling layers with batch normalization layers that stabilize and
accelerate the training process [20], [21]. First Convolution block consists of two convolutional layers having
128 filters, kernel size (3, 3) followed by max pooling and batch normalization. Each subsequent block
increases the number of filters further to 256 to enable the model to grasp higher and richer features layer by
layer. In this model, instead of flattening the feature maps, Global Average Pooling is used which reduces the
overfitting along with parameters [22], [23]. After that, add a fully connected layer, followed by a dropout
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with the rate set to 0.5, and finally the softmax output layer, which classifies an input image among the four
classes.

To further enhance model performance and prevent overfitting, two key callbacks were implemented:
EarlyStopping and ModelCheckpoint. EarlyStopping monitors validation accuracy, halting training if no
improvement is observed over 12 consecutive epochs and restoring the best model weights. This approach
prevents excessive training and potential overfitting. ModelCheckpoint saves the best model based on
validation loss, ensuring the best-performing model is retained. This model is then compiled with the best
optimizer, Adam, together with a sparse categorical cross-entropy loss function that will be appropriate for
multiclass classification. Train on up to 75 epochs, leveraging the callbacks provided in the code that will
help in optimizing the performance of this model by saving the best performing version of the model. The
model developed is shown in Figure 4.
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Figure 4. Developed Model

Figure 4 shows the architecture of the CNN, including the layer types, output shapes, and parameter counts.
The convolutional model starts with convolutional layers in the first block with 128 filters, kernel size 3x3,
and stride 1, reducing spatial dimensions of the feature maps. Further, a max-pooling layer reduces the
dimensions by half, and a batch normalization layer for stabilizing the training. Successive convolutional
blocks increased the filters to 256, increasing feature extraction, and were followed by similar max-pooling
and batch normalization layers. Instead of flattening, Global Average Pooling was used, which drastically
reduced the number of parameters while preventing overfitting as well. A dropout of 0.5 is also added for
further regularization. The fully connected layer provided the probabilities for classification using the
softmax function-classifying images into Cataract, Diabetic Retinopathy, Glaucoma, and Normal. The
architecture performs balancing between accuracy and computational efficiency; hence, the parameters
increase progressively across layers to enhance feature learning.

2.3 Confusion Matrix Evaluation

A further analysis has been made in model performance using a confusion matrix, which will
actually give the breakdown concerning the model's predictions across each class [24], [25]. This confusion
matrix here is showing the actual numbers for each category: true positives, false positives, true negatives,
and false negatives. It has given us an idea as far as the strength of this model in distinguishing between these
four classes of eye diseases, namely: Normal, Diabetic Retinopathy, Glaucoma, and Cataract. The matrix
helps to single out any particular classes that are more vulnerable to misclassifications so adjustments can be
made to increase accuracy. An ideal confusion matrix is that which is well distributed and maintains high
values on the diagonal-a sign that the model predicts most samples in a class correctly, therefore performing
excellent classification and minimizing errors. The evaluation of confusion matrix can be seen in Eq (1) — (4).

_ =+
B + o+ o+ M
S— @
S— 3)
- = - )




338 Rachmawanto, et al. / J. Soft Comput. Explor., Vol. 5, No. 4, November 2024 : 332 — 341

In the Confucian Matrix, TP means that the model rightly predicted the sample belonging to a certain class-
say, such as correctly diagnosing the image as Diabetic Retinopathy. TN would mean the model has rightly
predicted the sample not being part of the particular class-like an image predicted not to be cataract but it
actually is Glaucoma. FP will be where the model classifies a sample as belonging to one class when, in
reality, it is not part of that class-for example, when it predicts Glaucoma on an image of Normal ones. FN is
the situation where the model will fail to catch an image from a particular class and will result in
misclassification; for example, Diabetic Retinopathy classified as Normal. These values will be useful in
calculating the precision, recall, and F1-score and will provide insight regarding the model's effectiveness for
different classes.

3. RESULTS AND DISCUSSIONS

Following initialization described under Methods, the model was run using Python software, with
the help of deep learning libraries, specifically TensorFlow, best suited for the creation and training of CNN
models. Segregation of the dataset into training and validation sets by utilizing the proposed transfer learning
CNN architecture for this study formed the first step in model training. The model is then optimized using the
Adam algorithm and set with relevant parameters, such as EarlyStopping and ModelCheckpoint; this allows
validation accuracy to keep track and save only the best weights of the model in the process of training.
Training was stopped after the model showed the best performance on improved accuracy and reduced loss.
Lastly, the results of training were portrayed in graphs that represent accuracy and loss versus time. Figure 5:
The training accuracy graph shown in Figure 5(a) depicts the performance of the model concerning both
training and validation data with respect to each epoch. This includes training of the model for recognition of
the pattern in data. Figure 5(b) represents a training loss plot presenting a drop in the loss, which clearly
denotes how well the model managed to minimize the error in its prediction. These graphs will allow us to
decide whether there is overfitting or underfitting and if this model has achieved the best performance on the
data it was fitted to.
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After completing the training phase, the trained model was evaluated using a confusion matrix to assess its
classification performance. This evaluation reveals how the model's predictions compare to the actual labels,

providing a clear insight into the accuracy and classification errors. As illustrated in the confusion matrix
displayed in Figure 6.

Total Number Of Test data: B44

cataract

diabetic_retinopathy

True label

glaucoma

normal

Predicted label

Figure 6. Table of Confusion Matrix Using 20% Testing Data

The different model performance metrics computed are Accuracy, Precision, Recall, and F1-score; these are
summarized in the table 1. Overall, these measures of effectiveness describe the classification tasks that the
model has conducted: The accuracy will describe the total correctness of its predictions, while precision will
basically refer to the proportion of true positives out of all the positives that have been predicted. On the
other hand, recall reflects a model's performance in identifying all instances that are relevant. The F1-score is
the harmonic mean of precision and recall; it therefore provides a single metric that balances both aspects.
The values in Table 1 therefore highlight strengths and areas of improvement concerning the predictive
performance of the model.
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The final step of this research involved conducting prediction tests to evaluate the model's performance in
real-world scenarios. These tests aimed to assess the model's ability to generalize its learning to unseen data,
thereby validating its predictive capabilities. The outcomes of these prediction tests are illustrated in Figure 7,
which provides a visual representation of the model's performance across various test instances. The results
showcase the model's accuracy and reliability in making predictions, further reinforcing the effectiveness of
the methodologies employed throughout the study.

Tabel 1. Results of Confusion Matrix Evaluation

Class Accuracy Precision Recall F1-Score
Normal 89% 95% 92%
Cataract 959 95% 99% 97%

Glaucoma 96% 86% 90%
Diabetic Retinopathy 100% 100% 100%

Previous works have identified various classification accuracies on the detection of eye diseases using CNN
models. For example, Seetha et al. (2022) [16] illustrated an accuracy of 75% using an ensemble CNN for
diabetic retinopathy, while Sarki et al. (2021) [17] put forward an accuracy of 81.33% in using a new CNN
model for the multiclass classification of retinal diseases. Chakraborty et al. (2020) [18] achieved a 90%
validation accuracy of eye datasets but were focused principally on general medical imaging. In this aspect,
the current paper outperforms previous works with its high accuracy of 95%, using a CNN based on
TensorFlow. Its robustness and reliability are checked for four categories of classification relating to eye
diseases: Cataract, Diabetic Retinopathy, Glaucoma, and Normal.

4. CONCLUSION

This study focused on the classification of eye diseases using Deep Learning Convolutional Neural
Networks to serve as proof that Tensorflow contributes immensely to enhancing the diagnostic capability of
ocular conditions in the medical field. The methodologies adopted include the training of the CNN on the
dataset containing comprehensive eye images, followed by the performance evaluation of the model using
the confusion matrix. These results are really very high across different classes: 89% for normal, 95% for
cataract, 96% for glaucoma, and for diabetic retinopathy, it was a full 100%. The recall rates, however, were
equally impressive: 95% for normal, 99% for cataract, 86% for glaucoma, and 100% for diabetic retinopathy.
The Fl-scores in this regard were also very good, standing at 92% for normal, 97% for cataract, 90% for
glaucoma, and again 100% for diabetic retinopathy. The overall observed accuracy by the model was 95%,
hence proving to be efficient in the classification task of eye disease diagnosis. The study really outshines the
contribution of CNN in improving diagnostic accuracy to achieve appropriate timely interventions and better
outcomes in ophthalmology. In the future, a number of directions may be pursued in a search for more robust
and clinically applicable models. This would involve the use of a dataset comprising a wide range of ocular
pathologies with variability in subject demographics, which would result in better generalizability and
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performance across populations. Besides that, the research of some advanced architectures-such as the
mechanism of attention or transfer learning-might probably bring even more accuracy and efficiency.
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