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 The subject of forecasting earthquakes is an intriguing one to 

investigate. As a natural calamity, earthquakes continue to be 

devastating, not just to the economy but also to the lives of 

individuals. This gave rise to the concept of creating an early warning 

system against seismic catastrophes to minimize deaths. Researchers 

have been making earthquake forecasts and seismic hazard ratings of 

a location for a few years now. In this work, we attempt to forecast 

earthquakes before they occur using p-arrival data, which includes 

information on disaster arrival time and amplitude height from the 

arrival station. Several studies on earthquake prediction have been 

carried out so far and have developed and used the Random Forest 

method and one of the Machine Learning. According to, the process 

of predicting earthquakes has been studied for a long time, but there 

is still uncertainty due to the diversity and complexity of the 

earthquake phenomenon itself. According to, conducting a random 

forest prediction model to identify the structural safety status of 

buildings damaged by the earthquake is probabilistic. An 

earthquake's latitude, longitude, magnitude, and depth may be 

predicted using the random forest algorithm. A random forest with 

multioutput technique is employed, with variables being each 

station's recorded value and geographic position. This study's 

predictions were accurate to within 63 percent. 
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1. INTRODUCTION 

Indonesia is a seismically active territory, having 3,486 earthquakes with a Richter magnitude greater 

than 6.0 between 1976 and 2006. The Meteorology, Climatology, and Geophysics Agency's (19-year) 

research has resulted in 27 damaging earthquakes and 13 earthquakes that caused tsunamis [1][2]. Every 

year, Indonesia is hit by an average of 2 earthquakes and one tsunami [3]. There are several methods to 

classify earthquakes depending on their causes. Seismologically, tectonic earthquakes are those that occur 

when elastic energy held in tectonic plates releases. In other words, volcanic earthquakes occur when 

volcanic activity causes earthquakes to occur [4]. Last but not least, earthquakes can be attributed to human 

activity as a contributing factor. To give you a few examples, consider building high-dams and injecting 

enormous amounts of water into rock aquifer or oil wells [5]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Several studies on earthquake prediction have been carried out so far and have developed and used the 

Random Forest method and one of the Machine Learning. According to [1], the process of predicting 

earthquakes has been studied for a long time, but there is still uncertainty due to the diversity and complexity 

of the earthquake phenomenon itself. According to [2], conducting a random forest prediction model to 

identify the structural safety status of buildings damaged by the earthquake is probabilistic. According to [6], 

in this study, an evaluation of the performance of the machine learning algorithm "Random Forests" was 

carried out to classify seismic signals recorded at the Piton de la Fournaise volcano, La Reunion Island 

(France). Meanwhile, [7], with data on water pipe damage due to the earthquake from February and June 

2011 in Christchurch, New Zealand, compares four methods [8][9][10]. 

The ability to make appropriate choices after a large earthquake is critical for allowing short-term 

decisions, such as those involving building evacuation or repair. Furthermore, by integrating fast building 

damage assessment with short-term forecasts of seismicity and related hazards, it is possible to enhance 

seismic crisis management and safety measures [11]. For short-term forecasting on a city-wide scale or in the 

case of important buildings, performance levels linked to imminent occupancy or damage grades should be 

taken into account. In particular, fast methods based on the Markov Chain have been utilized to evaluate 

seismic risk assessment; however, the evaluation must be extended throughout the full length of the 

aftershock series in order to account for possible damage accumulations resulting from the aftershock 

sequence. After then, operational methods are needed to integrate aftershock occurrence predictions, damage 

accumulation models, and building health characterizations in order to achieve the desired levels of damage. 

It is common practice to make earthquake risk predictions during an aftershock series, which is based on 

operational earthquake forecasting (OEF). Hermann et al. [12] utilized the OEF to predict the time-varying 

seismic risk during an earthquake series scenario mimicking the 1356 Basel earthquake, which they found to 

be accurate. They calculated the number of lives lost and the hazards associated with them in the near term in 

order to support choices such as evacuation or the suspension of essential activities in reinforced concrete 

(RC) structures. Aftershock sequences in Italy were analyzed retrospectively by Chioccarelli and Iervolino 

[4], who utilized OEF to conduct their study of loss estimates [13][14][15][16]. 

In seismic crises, decision-makers must take into account the increased susceptibility of structures as a 

result of mainshock damage, as well as the time-variant vulnerability of buildings as a result of the possibility 

of aftershock damage accumulation. Aftershock damage accumulation has been quantified using probabilistic 

models in order to determine the relative contribution of aftershock damage accumulation to the damage 

produced by the mainshock [17][18]. Evaluation of seismic performance and development of damage 

accumulation models, in conjunction with a probabilistic assessment of aftershock occurrence, have been 

carried out using Markov Chain-based methods, as has been done for aftershock occurrence. The majority of 

research find that aftershocks provide a significant contribution to prediction of consequences and losses. The 

short-term variability of a building's vulnerabilities, as measured in relation to the damage accrued over the 

course of the whole seismic sequence, is a critical factor to consider when making short-term decisions 

[18][11]. 

When buildings' stiffness progressively deteriorate before collapse, monitoring the elongation of their 

fundamental period may aid in the assessment of seismic damage to such structures [19]. When considering 

apparent structural stiffness and structural health, the fundamental period (or frequency) is considered to be a 

surrogate [20][17][21]. It has been possible, for example, to investigate the impact of seismic damage 

accumulation on a macro-seismic intensity estimate by using the residual stiffness of masonry structures 

derived from period measurements [22][23]. We conducted laboratory experiments on unreinforced masonry 

specimens in order to measure the fundamental frequency shift as a function of structural drift and the degree 

of damage. Researchers have discovered empirical connections between the frequency shift and the damage 

index for RC structures using experimental and computational methods [24][25][26]. In spite of this, building 

tagging processes often give a red tag to structures that have suffered significant damage without collapsing, 

and to structures that are deemed dangerous, unrepairable, or unworthy of repair. In this regard, the methods 

described below are concerned with the probability of damage states ranging from minor to severe, 

depending on the length of time that has passed since the collapse was seen [27][28][29]. 

Furthermore, [30][31][32] used Decision Tree Bagging and Random Forest in the field of earthquake 

precursors to detect GPS-TEC (Total Electron Content) seismoionospheric anomalies around the time and 

location of the Chile earthquake 27 February 2010. In [33], built an earthquake alert system in 9 countries to 

minimize the earthquake's impact. Furthermore, [34], to predict the earthquake's strength in California using 

the big data algorithm. And [35][36] applied the Artificial Neural Network Cross-Validation and AHP-
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TOPSIS methods to calculate the risk of an earthquake in Aceh, Indonesia. Based on previous research, it can 

be seen that Random Forest can be used to predict earthquake disasters. 

 

2. METHOD 

Predicting the depth, strength/magnitude, and earthquake location (longitude and latitude) of an 

earthquake using datasets taken from three monitoring stations. By using Random Forest to get accurate 

results and using google collab as software that helps process data. Steps to make predictions using google 

collab: 

First, enter the dataset into Google Drive, then connect Google Drive with Google Collab to use the 

dataset. Second, by using a random forest regressor and doing a split test. Third, determine the variables x 

and y, where x is the data from the earthquake monitoring station, and y is the desired prediction result. 

Fourth, separate train and test data with 289 train data sizes and 30 tests. Fifth, by using a random forest 

regressor, predictions of the value will be made using the x test variable. Sixth, compare the results between 

data, multi-random forest, and random forest in the form of plots. Seventh, the prediction results were 

obtained from the earthquake's depth, strength, and location with a sure accuracy. Eighth, actions can be 

taken to see the results more clearly. 

In addition to using google collab, here are the four steps in the Random Forest algorithm [37]: 

1. Choose a random bootstrap sample of size n (randomly taken n samples from the training set with 

replacement) 

2. Build a decision tree from the bootstrap sample. On each node:  

a. Randomly select d features without replacement  

b. Split the nodes using the feature that provides the best split according to the objective function. 

3. Repeat steps 1) and 2) k 

4. Combine predictions based on each tree to assign a class label based on the most votes. 

Furthermore, by using the Random Forest algorithm with the Scikit-learn library, the following 

equation is obtained [38] 

1) The number of samples used is as many as the original data lines 

𝑛 = 𝑛𝑏𝑎𝑟𝑖𝑠 𝑑𝑎𝑡𝑎 𝑎𝑠𝑙𝑖     (1) 
2) The following equation determines the value of d 

𝑑𝑓𝑖𝑡𝑢𝑟 = √𝑗𝑢𝑚𝑙𝑎ℎ 𝑓𝑖𝑡𝑢𝑟     (2) 

3) Decision Tree is an algorithm Cart Tree (Classification and Regression Trees) 

a) Split data 

𝑠𝑝𝑙𝑖𝑡 𝜃 = (𝑗, 𝑡𝑚)      (3) 

𝑄𝑙𝑒𝑓𝑡(𝜃) = (𝑥, 𝑦)|𝑥𝑗 ≤ 𝑡𝑚     (4) 

𝑄𝑟𝑖𝑔ℎ𝑡(𝜃) = (𝑥, 𝑦)|𝑥𝑗 > 𝑡𝑚     (5) 

Information: 

𝑠𝑝𝑙𝑖𝑡 𝜃     : split data 

𝑗               : feature 

𝑡𝑚            : threshold value specified at node m 

𝑄𝑙𝑒𝑓𝑡(𝜃)  : data partition on the left child where the x value in feature j is less than or equal to 

the threshold value at node m 

𝑄𝑟𝑖𝑔ℎ𝑡(𝜃) : data partition on the right child where the x value in feature j is more than the 

threshold value at node m 

𝑥               : training data 

𝑦               : class label 

b) Impurity value of child node m 

𝐺𝑐ℎ𝑖𝑙𝑑(𝑄, 𝜃) =
𝑛𝑙𝑒𝑓𝑡

𝑁𝑚
𝐻 (𝑄𝑙𝑒𝑓𝑡(𝜃)) +

𝑛𝑟𝑖𝑔ℎ𝑡

𝑁𝑚
𝐻 (𝑄𝑟𝑖𝑔ℎ𝑡(𝜃))  (6) 

𝐻(𝑋𝑚) = ∑ 𝑃𝑚𝑘(1 − 𝑃𝑚𝑘)𝑘      (7) 

𝑃𝑚𝑘 =
1

𝑁𝑚
∑ 𝐼(𝑦𝑖 = 1)𝑥𝑖∈𝑅𝑚

     (8) 
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Information: 

𝐺𝑐ℎ𝑖𝑙𝑑(𝑄, 𝜃) : information gain child or impurity node m 

𝑛𝑙𝑒𝑓𝑡             : the number of data partitions on the left child 

𝑛𝑟𝑖𝑔ℎ𝑡           : the number of data partitions on the right child 

𝑁𝑚                : the amount of data on node m 

𝐻(𝑋𝑚)          : function to find the impurity value 

𝑘                   : label class value 

𝑃𝑚𝑘               : the proportion of class label k on node m 

𝐼                    : a lot of data that the value of the label classy is the same as the class k 

𝑖                    : row region on node 𝑚 [0,1,2, … , 𝑁𝑚 − 1] 

Split data is done by selecting feature parameters and threshold node m, producing the 

smallest Information Gain Child value. 

𝜃∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃𝐺𝑐ℎ𝑖𝑙𝑑(𝑄, 𝜃)     (9) 

Information: 

𝜃∗                 : the smallest information gain value of child node 𝑚 
 

c) Information Gain 

𝐼𝐺(𝑄, 𝜃) =
𝑁𝑚

𝑁
(𝐻(𝑄(𝜃)) − 𝐺𝑐ℎ𝑖𝑙𝑑(𝑄, 𝜃))   (10) 

Information: 

𝐼𝐺(𝑄, 𝜃)        : information gain node 𝑚 

𝑁                   : the amount of data 

𝐻(𝑄(𝜃))       : impurity parent pada node 𝑚 

𝐺𝑐ℎ𝑖𝑙𝑑(𝑄, 𝜃)   : information gain child pada node 𝑚 

4) The Feature Importance function can be calculated from the average impurity reduction of all 

decision trees in a Random Forest without assuming whether the data used are linearly separated 

or not [12]. Find the value of feature importance can be seen in the following equation [39]: 

a) Menghitung nilai importance pada setiap decision tree: 

𝐹𝐼𝑖 =
∑ 𝐼𝐺𝑗𝑗

∑ 𝐼𝐺𝑘𝑘
      (11) 

Information: 

𝐹𝐼𝑖  : importance value for feature I in the decision tree 

𝐼𝐺𝑗  : information gain value of the essential feature at node j 

𝑗      : node in a decision tree 

𝑖      : feature index to i 

𝑘     : all nodes in the decision tree 

b) Calculating the value of feature importance in a random forest: 

𝑅𝐹𝐹𝐼𝑖 =
∑ 𝐹𝐼𝑖𝑗𝑗

𝑇
      (12) 

Information: 

𝑅𝐹𝐹𝐼𝑖   : importance value for feature I in the decision tree 

𝐹𝐼𝑖𝑗       : a most crucial feature I in decision tree j 

𝑗            : decision tree pada random forest 

𝑇           : the number of decision trees in a random forest 

5) Confusion Matrix is a matrix that describes the performance of an algorithm [12]. From the 

Confusion Matrix, the values of false-negative (TFN), false positive (TFP), and true negative 

(TTN) can be obtained with the equation as [18] 
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𝑇𝐹𝑁𝑖 = ∑ 𝑥𝑖𝑗
𝑛
𝑗=1
𝑗≠𝑖

      (13) 

𝑇𝐹𝑃𝑖 = ∑ 𝑥𝑗𝑖
𝑛
𝑗=1
𝑗≠𝑖

      (14) 

𝑇𝑇𝑁𝑖 = ∑ ∑ 𝑥𝑗𝑘
𝑛
𝑘=1
𝑘≠𝑖

𝑛
𝑗=1
𝑗≠𝑖

     (15) 

𝑇𝑇𝑃𝑎𝑙𝑙 = ∑ 𝑥𝑗𝑖
𝑛
𝑗=1       (16) 

 

From the above equation, the accuracy value is determined to determine the performance of the 

algorithm. Accuracy is the overall average performance [40], following the form of the equation 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑇𝑃𝑎𝑙𝑙

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 𝑒𝑛𝑡𝑟𝑖𝑒𝑠
    (17) 

 

3. RESULTS AND DISCUSSIONS 

 

1) Using Google Collab 

From table 1, it can be seen that the prediction and data values are almost the same, although they 

are still inaccurate because the accuracy value is still 63%. Furthermore, it can be seen more clearly in the 

table to compare the importance of the data and predictions of random forests. 

 

Table 1. the prediction and data values 

 
  

The above method obtains the comparison results between the data, multi-random forest, and 

random forest. The comparison of the values is illustrated in latitude and longitude coordinates. With 

squares as data, circles as multi-random forest values , and triangles as random forest values, figure 1. 
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Figure 1. Comparing random forests and the multi-output meta estimator 

 

  It can be seen more clearly that the prediction results are close to the data, so it can be said that the 

prediction results are comparable to accurate. It's just that some predictions are wrong, as in the magnitude at 

point 11; according to the data, the result is 4.7 SR while the forecast shows 4.03. To overcome this problem, 

further iterations are needed to obtain the most fantastic accuracy of results. 

 

2) Manual calculation 

  Using (1) to determine how many samples will be used in this study and obtained n = 386. Next, 

look for the value of d using (2) and get the value d=√16=4. This means that four features will be used. Then 

split the data using (3), where j is the magnitude and tm is used 4.0. Next, do a split with the conditions (4) 

and (5) so that you get two groups, namely left (x_j≤4) and right (x_j>4), as follows in table 2: 

 

 

Table 2. split with the conditions 

Class N Left N Right 

0 16 43 

1 16 1 

2 7 2 

4 3 1 

5 19 13 

7 5 0 

8 0 2 

9 17 2 

10 0 3 

12 14 10 

13 1 6 

16 30 18 

17 4 0 

18 25 16 

19 1 1 

20 4 3 

21 4 4 
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22 24 8 

24 1 0 

25 3 0 

26 2 0 

27 1 3 

28 2 1 

29 15 3 

30 23 6 

31 2 1 

Total 239 147 

  

  Next, the Information Gain Child value of the magnitude feature will be searched using (6). First, 

look for the value of left P_mk and right P_mk using (8) and then look for the value of H(Q_left (θ)) and 

H(Q_right (θ)) using (7). By doing the calculations, the values obtained are H(Q_left (θ))=0.9227 and 

H(Q_right (θ))=0.869. This followed by finding the value of Gchild(Q,θ) with the following formula: 

 

 

𝐺𝑐ℎ𝑖𝑙𝑑(𝑄, 𝜃) =
𝑛𝑙𝑒𝑓𝑡

𝑁
𝐻 (𝑄𝑙𝑒𝑓𝑡(𝜃)) +

𝑛𝑟𝑖𝑔ℎ𝑡

𝑁
𝐻 (𝑄𝑟𝑖𝑔ℎ𝑡(𝜃)) 

=
239

386
(0,9227) +

147

386
(0,869) = 0,9022 

 

 

  Based on these calculations, it is known that the child's information gain for the magnitude feature 

with a threshold of 4 is 0.9022. Next, look for the attribute with the minimum child information gain value. 

For the example of manual calculations, this value will be selected to find the information gain value. Find 

the value of information by using (10), where the importance of H(Q(θ)) and P_mk is the total number in 

each class. After calculating the value of H(Q(θ))=0.9164, which will be used to find the value of IG(Q,θ) 

with the following formula: 

 

𝐼𝐺(𝑄, 𝜃) =
𝑁𝑚

𝑁
(𝐻(𝑄(𝜃)) − 𝐺𝑐ℎ𝑖𝑙𝑑(𝑄, 𝜃)) 

=
386

386
(0,9164 − 0,9022) = 0,0142 

 

 

Next, the essential features will be searched using the IG(Q,θ) value of the magnitude feature only, 

so that by using (11), the value of FI_i=1 will be obtained. Furthermore, the value of the essential 

components of the random forest was searched by using (12) the value of RFFI_i = 0.25. The importance 

value of feature magnitude is 0.25. 

Then look for the accuracy value using the original data and the prediction results with the value 

TTP_all=243. TTP_all is the number of actual data entries equal to the predicted data. Then by using (17), 

the following accuracy is obtained. 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑇𝑃𝑎𝑙𝑙

𝑡𝑜𝑡𝑎𝑙 𝑒𝑛𝑡𝑟𝑖𝑒𝑠 𝑡𝑒𝑠𝑡𝑒𝑑
=

243

386
= 62,95% 

 

 

4. CONCLUSION 

From the two methods, it can be seen that the accuracy of the two calculations is relatively similar, 

which is close to 63%. However, the accuracy of manual calculations can be improved by finding the 

minimum child information gain value from other features such as deep, latitude, and longitude. As for the 

measures using Google Collab, it can be iterated again to get the highest accuracy. 
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