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Spam email

Spam emails are still a big problem, crowding out inboxes
and annoying email users everywhere. SVM and Naive Bayes
are frequently used algorithms that have demonstrated
excellent performance in performing text classification,
including spam detection. The purpose of this study is to
evaluate the overall performance of SVM and Naive Bayes in
the context of detecting spam emails using default
parameters. This research utilizes Bayesian Optimization and
Grid Search Parameters for both SVM and Naive Bayes
models to help maximize the performance of the constructed
models. This study uses a spam email dataset that has 2
sample groups, namely spam and ham. Of the three
parameter selection methods that have been tested on the
SVM Algorithm, Bayesian Optimization is a parameter tuning
method that has the most satisfying results in accuracy,
precision, recall, and f1 scores respectively with values of
98.5642%, 99.4048%, 89.
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1. Introduction

Spam emails are still a big problem, crowding out inboxes and annoying email
users everywhere [1]. To maintain the integrity and security of email
communications, spam must be identified and successfully filtered. Spam emails
are unsolicited, often irrelevant or malicious messages sent in bulk to a large
number of recipients without their consent. These emails can contain various
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forms of unwanted content, such as advertisements, scams, phishing attempts,
malware, or other fraudulent activities.

The effects of spam emails can be significant and far-reaching. Firstly, they
inundate email inboxes, making it difficult for users to find and attend to legitimate
messages. This overcrowding can lead to decreased productivity as users spend
time sorting through and deleting spam. In addition to being a nuisance to
individual users, spam emails can also have broader societal impacts. They can
contribute to the spread of misinformation, facilitate cybercrime, and undermine
trust in online communication systems. Therefore, effective detection and filtering
mechanisms are essential to mitigate the negative effects of spam and ensure the
integrity and security of email communications. Therefore, spam email detection
is an important issue to research.

SVM and Naive Bayes are frequently used algorithms that have demonstrated
excellent performance in performing text classification [2], [3], including spam
detection [4]. Despite the existing research on Naive Bayes and SVM classifiers for
spam email detection, a thorough analysis of their performance and the effect of
hyperparameter tuning still needs to be carried out [5]. Previous studies [6], [7]
have not directly evaluated the performance of the Naive Bayes and SVM classifiers
under various hyperparameter settings, specifically with Bayesian optimization
and grid search methods, in email spam detection. This study compares the
classifiers Naive Bayes and SVM for detecting spam emails in a systematic way,
considering the impact of hyperparameter tuning methods such as Bayesian
optimization and Grid Search. We hope to improve classifier performance and find
the best parameter settings for each algorithm by experimenting with these
different configurations through optimization.

Support Vector Machine (SVM) is a powerful and adaptable supervised learning
technique that seeks to identify the best decision boundaries for classifying data
points [4]. This is done by constructing hyperplanes that maximize the distance
between various classes in a high-dimensional feature space. Several fields,
including natural language processing and text categorization, have made effective
use of SVM because of its proficiency in complex relationships and high-
dimensional data [8]. In SVM, each email is represented as a point in a high-
dimensional feature space, with each dimension representing a different feature
[9]. A feature might, for example, indicate how often a certain word occurs in an
email or whether a certain trait exists. The goal of SVM is to identify hyperplanes
with as wide a distance between spam and non-spam emails as possible [10].
Margin is the distance between the closest data point of each class and the
hyperplane. This margin is what SVM wants to increase because the bigger the
margin, the more SVM has high generalization performance. Support vectors are
data points that are closest to the margins or those on the margins [11]. This
support vector is very important in determining decision boundaries and assigning
new, unknown e-mails to a class. By placing new unseen emails on the right side
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of the decision boundary depending on their feature representation, SVM can
classify them after the hyperplane has been assigned. Spam class is assigned to
emails on one side of the hyperplane, and non-spam is assigned to emails on the
other side.

Naive Bayes (NB) is a classification algorithm based on Bayes' theorem [12].
Because it assumes that each data feature or characteristic is independent, this
algorithm is considered "naive". Naive Bayes determines the prior probability of
each class, or the probability that each class will appear in the data set. To calculate
this, this algorithm divides the total number of instances by the number of
instances in each class. The probability of each feature appearing in each class is
calculated for each feature. This is done by counting the number of instances in
each class where the feature has a certain value and dividing that number by the
total number of instances in that class. Naive Bayes will determine the posterior
probability of each class given a new unlabelled case. Posterior probability is the
possibility of a class based on the observed features. To get the posterior
probability, this algorithm will multiply the class prior probability with the
probability of each feature in that class [13]. Every class experiences this. The new
instance must then be assigned to the class with the highest posterior probability.
The speed and simplicity of the Naive Bayes algorithm are its main advantages [14].
When the independence assumption is held consistently, this algorithm can
handle very large volumes of data and work effectively. However, this assumption
may not hold for complex interactions between traits, which can be a drawback in
some situations.

Bayesian optimization is a technique used to find the best set of hyperparameters
for machine learning models [15]. The goal of Bayesian optimization is to search
through a space of possible hyperparameter values and identify the combination
that produces the best model performance on a particular task, such as
classification [15]. Accuracy, precision, and recall are examples of assessment
metrics that can be used to measure the resulting performance [16]. When an
initial set of hyperparameter values is selected, the model is trained and assessed
using these values, which is known as Bayesian optimization. Statistical models
known as alternate models, such as the Gaussian Process, are built on performance
to roughly represent the relationship between hyperparameters and evaluation
metrics. Bayesian optimization makes a whole new set of hyperparameter
recommendations based on the surrogate model, taking into account the
uncertainty of the surrogate model and the best performance [17]. The
replacement model is modified as new entries are made, and this process is
repeated until the perfect set of hyperparameters is identified. Bayesian
optimization is able to intelligently explore the hyperparameter space and
concentrate on promising regions by leveraging the knowledge gathered from
previous evaluations, which ultimately leads to an ideal set of hyperparameters
[18].
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Grid search is a methodical approach used in machine learning to adjust model
hyperparameters [19]. This parameter significantly affects the performance and
behaviour of the model. A grid-like structure is created in a grid search by
specifying a predefined set of values for each hyperparameter. All possible
combinations of hyperparameter values are shown in this grid. The performance
of the model is then assessed using every possible combination of
hyperparameters by the grid search algorithm as it repeatedly searches through
this grid. The model is trained and scored for each combination using a selected
performance measure, such as an f1 score. The optimal hyperparameter for the
model is the one whose value produces the best performance metric. Grid search
ensures that all possible combinations of hyperparameters are investigated,
thereby enabling the best set of hyperparameters for a particular model to be found
[20]. This eliminates the need for manual tuning and offers a methodical approach
to determining the ideal configuration, increasing functionality and model
generalizability.

2. Method

Google Collab was used as an instrument to do this research. The flow of the
research conducted is described as shown in Figure 1.
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Figure 1. Research flowchart

Dataset

In this study, we used the spam email dataset [21] which is available on Kaggle in
csv form, which contains the Message and Category columns. The category consists
of spam and ham, the words spam and ham help to distinguish between legitimate
(ham) and invalid (spam) messages.
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Convert Category To Binary

Spam and non-spam categories need to be converted into binary to facilitate
training and evaluation of spam detection models. Machine learning models
generally support binary classification tasks with a target value of O for non-spam
and 1 for spam. Converting spam and non-spam categories into binary is necessary
for several reasons. Many machine learning algorithms, particularly those used for
classification tasks, are designed to work with binary labels. By converting spam
and non-spam categories into binary (O for non-spam and 1 for spam), we align the
data with the format expected by these algorithms, simplifying the training and
evaluation processes [22].

Data Splitting

Data splitting is the process of separating the dataset into two subsets, namely the
train set and the test set [23]. The train set is used to train the model, while the test
set is used to test the performance of the model that has been trained. The goal is
to avoid overfitting and ensure that the model can make good predictions on new
data that has never been seen before [24]. The portion of the train set and test set
used in this study was 75% train set and 25% test set.

Data Preprocessing

Data processing for email spam detection involves several steps. First, the data is
cleaned by removing punctuation and converting text to lowercase. This step helps
ensure consistency and standardization of text data [24]. Then, the dataset is
divided into features and target variables. The features represent purged text
messages, while the target variable represents the category label of each message,
such as "ham" or "spam". Then, the data is divided into training and test sets. The
training set is used to train the model, while the test set serves as an invisible data
set to evaluate model performance. This separation ensures that the model can
generalize well to new, unseen messages. The next step involves pre-processing
the text. Stopwords, which are words that occur frequently and are not very
important in the analysis, were omitted from the text [25]. In addition, stemming
is done to reduce words to their basic forms or roots [26]. These pre-processing
steps aim to remove noise and reduce the dimensionality of the text data, so that
the model can focus on important patterns and improve performance. To convert
the text data into a format suitable for modelling, the count Vectorizer technique
is applied. Count Vectorizer converts text into a numerical representation by
counting the frequency of words in the text [27]. This vectorization process allows
machine learning algorithms to work with text data effectively and capture the
underlying patterns.
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Training Models

Model training is the process of training a machine learning model using training
data to optimize its performance in studying patterns or relationships between
input features and output targets. This process involves adjusting the parameters
and weights of the model based on the resulting prediction errors. The goal is to
build a model that can make accurate predictions on new data. Model evaluation
is carried out using a test set data to ensure good performance.

In this research, Naive Bayes and SVM algorithms are used to detect spam emails.
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Naive Bayes

Naive Bayes Classifier is one of the supervised learning algorithms. Bayes’
theorem is used to calculate the probability of an event [13]. The advantages
are high independence, the ability to handle large amounts of data, and
dependence on probability distributions [14]. Bayes' theorem is used to
determine probability distributions based on the frequencies in a data set. The
Novel Naive Bayes classifier chooses the class with the largest posterior
probability from the probability distribution. The posterior probability
equation is shown in equation (1) [13].

_ P(BlA)r@)
P(A|B) = ~rE (1)
Support Vector Machine

Supervised learning technique that is widely used for classification and
regression tasks [4]. In classification, SVM assigns a label or class (denoted by
y) to the input feature vector (denoted by x). Feature vectors that belong to the
same class have the same name. SVM is considered as one of the best
parameter classifiers available [8]. The basic rule is to find the hyperplane as
far from the training samples as possible to optimize the distance between
training samples [10]. In SVM, data points are represented visually as points in
a multidimensional space, where each dimension represents a certain feature
[9]. Then, the SVM algorithm determines the optimal hyperplane to efficiently
separate the two layers in this multidimensional space. Figure 2 shows a
simple linear SVM classification with a hyperplane and a line separating the
vectors of the two classes.



Figure 2. Linear SVM classification

Suppose the equation of a straight hyperplane is:

X, =ax;+b (2)
ax; +b—x,=0 (3)
wx+b=0 (4)

where x = (x;,x,) and w = (a,1) represent the hyperplane equation for a
multidimensional space and b is the bias. SVM uses the following hypothesis
function h, to make predictions after determining the hyperplane.

h(x)) =+1,if wx+b >0 (5)
and

h(x;)) =—-1,if wx+b <0 (6)

Optimization Models

To further improve the performance of the model, hyperparameter tuning is
performed. Bayesian optimization is used to find optimal hyperparameters for the
SVM model. The optimization process aims to maximize the F1 score, which is a
metric that balances precision and recall. The same optimization technique is also
applied to fine-tune the hyperparameter alpha for Naive Bayes.

After obtaining the optimized hyperparameters, the optimized model is then fitted
to the training data, and predictions are made on the test dataset using the
optimized model. Grid search is also used to investigate various hyperparameters
for SVM and Naive Bayes. Grid search thoroughly combs the defined
hyperparameter space while cross validation assesses the effectiveness of the
model. Based on the F1 value, the top hyperparameter and the matching model are
found. On the training data set, the best model from grid search and Bayesian
optimization is used. This process makes it possible to assess the effectiveness of
the model after hyperparameter adjustment.
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Evaluate Performance

To analyze the accuracy obtained by the model in classifying test data, evaluation
was carried out using a confusion matrix. Accuracy measures the overall accuracy
of a model's predictions by calculating the ratio of correctly classified samples to
the total number of samples in the test dataset. This gives an indication of the
general predictive accuracy of the model. Accuracy can be calculated using formula

(7).
Accuracy = (TN +TP) / (TN + FP + FN + TP). (7)
The confusion matrix table can be seen in Table 1.

Table 1. Confusion matrix

Predicted Negatives Predicted Positives
Actual Negatives TN FP
Actual Positives FN TP

Model evaluation also will be carried out by analyzing model performance based
on the variables F1 score, recall and also precision. The F1 score is a metric
commonly used to evaluate the performance of a classification model. This score
combines precision and recall into one score, thus providing a balanced measure
of model accuracy. The formula for calculating the F1 score is as follows: F1 =2 *
(precision * recall) [ (precision + recall) [28]. The performance of the trained model
is evaluated using various metrics, including accuracy, precision, recall and F1
score. These metrics provide insight into how well the model is performing in
classifying email messages as spam or not spam. Precision focuses on the model's
ability to correctly identify spam emails among predicted positive emails. It
measures the proportion of spam emails that are correctly classified from all emails
that are predicted to be spam. A high precision value indicates a low false positive
rate. Recall, also known as sensitivity or true positive rate, measures a model's
ability to correctly identify all true positive samples. It calculates the ratio of
correctly classified spam emails to the total number of actual spam emails. A high
recall value indicates a low false negative rate.

The F1 score is a harmonized average of precision and recall, providing a balanced
measure of model performance [8]. This score takes both precision and recall into
account to assess the model's accuracy in identifying positive and negative
examples. For the SVM and Naive Bayes models, the accuracy, precision, recall and
F1 scores were calculated based on the predicted labels and the actual labels of the
test dataset. These values indicate the model's performance in classifying email
messages. In addition, for the SVM and Naive Bayes models optimized through
Bayesian optimization, the accuracy, precision, recall, and F1 values are calculated
using predicted labels and actual labels from the test dataset, respectively.
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Furthermore, accuracy, precision, recall, and F1 values were calculated for the SVM
and Naive Bayes models which were obtained through a grid search. In the case of
email spam detection, the F1 score is often considered more important than other
metrics such as accuracy, precision and recall. The reason for this is due to the
unbalanced nature of the spam detection dataset. Email datasets usually have a
large number of non-spam messages (ham) compared to spam messages. This class
imbalance can lead to high accuracy values even though the model performs
poorly in detecting spam. For example, if the dataset consists of 90% ham and 10%
spam, a classifier that predicts all emails as ham will achieve 90% accuracy without
effectively identifying spam. In such unbalanced scenarios, precision and recall
alone may not provide a complete picture of model performance. Precision focuses
on the accuracy of positive predictions, whereas recall focuses on being able to
correctly identify all positive examples. However, high precision values can be
achieved by labelling very few examples as spam, while high recall values can be
obtained by labelling almost all examples as spam, including many false positives.
The F1 value, which is the harmonic average of precision and recall, takes both
metrics into account and balances their importance. This value gives equal weight
to precision and recall and provides a single value that reflects the trade-off
between the two. This is particularly useful in spam detection, where correctly
identifying as many spam messages as possible (high recall) while minimizing false
positives (high precision) is critical.

3. Results and Discussion

From the research that has been carried out, the first step taken is to analyze the
results of the accuracy of the model built. The accuracy results of the model built
can be seen in Table 2.

Table 2. Comparison table

Algorithm Accuracy Precision Recall F1 Score
SVM 98.4207% 99.3976% 88.7097% 93.75%
NB 98.5642% 96.6292% 92.4731% 94.5055%
Bayes SVM 98.5642% 99.4048% 89.7849% 94.3503%
Bayes NB 98.5642% 96.1111% 93.0108% 94.5055%
SVM Grids 98.4207% 99.3976% 88.7097% 93.7500%
Grid NB 98.5642% 96.1111% 93.0108% 94.5355%

Based on table 2, the classifier with untuned parameters that has the highest
accuracy score is the NB classifier with a score of 98.5642%, while the SVM classifier
has a score of 98.4207%. The highest precision score resulted from the untuned
classifier, namely the SVM classifier with a score of 99.3976% followed by the NB
classifier with a score of 96.6292%. The highest recall and f1 scores for the untuned
classifier are those owned by the NB classifier with scores of 92.4731% and
94.5055%. For the SVM classifier, the recall and f1 scores are 88.7097% and
93.7500%. For accuracy metrics. The classifier that has done Bayesian Optimization

61



or Bayes NB tuning parameters achieves an accuracy score of 98.5642%, while the
SVM classifier obtains the same accuracy score of 98.5642%. However, if you look
at the precision score, the SVM classifier shows the best results with a score of
99.4048%, followed by the NB classifier with a score of 96.1111%. For recall and F1
scores, the NB classifier achieved the highest scores of 93.0108% and 94.5055%,
while the SVM classifier achieved a recall score of 89.7849% and an F1 score of
94.3503%. For the classifier that has performed parameter tuning using the grid
search method or called gird SVM with the parameters adjusted it achieves an
accuracy score of 98.4207%, while the NB classifier with the parameters adjusted
achieves an accuracy score of 98.5642%. When looking at the precision score, the
NB grid with tuned parameters achieved the highest score of 99.3976%, while the
SVM grid with tuned parameters achieved a precision score of 96.1111%. For recall
and F1 scores, the NB grid obtained a recall score of 93.0108% and an F1 score of
94.5355%. Meanwhile, the SVM grid has a recall score of 88.7097% and an F1 score
of 93.7500%.

Based on the result above, it can be noticed that the Naive Bayes classifier
dominates almost all measurement metrics compared to the SVM classifier which
only excels in precision scores. For the Naive Bayes classifier on the accuracy score,
the Bayesian optimization tuning parameters and grid search do not affect the
increase or decrease in performance. On precision and recall metrics, Naive Bayes
shows the highest performance without any parameter tuning at all. while for the
f1 metric, Naive Bayes has the highest performance by tuning the grid search. For
the SVM classifier, this classifier has the highest performance compared to other
parameter tinting methods. after Bayes optimization is done except for the f1
metric which has the highest score after tuning grid search parameters.

4. Conclusion

According to the study findings, the Naive Bayes classifier generally outperforms
the SVM classifier in identifying spam emails, except for precision where SVM
performs better. Grid Search Multi Nominal Naive Bayes yields better results
compared to Bayesian Optimization. However, the SVM classifier with Bayesian
optimization achieves the highest precision, indicating fewer false positives.
Overall, Grid Search Naive Bayes exhibits superior performance in terms of
accuracy, recall, and F1-score, making it a preferred choice for spam email
detection tasks. These results provide valuable insights for researchers and
organizations aiming to enhance email security.

Future research can explore additional data processing techniques and
hyperparameter tuning methods to further improve the effectiveness of both SVM
and Naive Bayes classifiers in spam email detection. Additionally, investigating
ensemble methodologies and addressing issues with unbalanced datasets will
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contribute to developing more reliable spam detection models, ultimately
improving email communication security.

REFERENCES

[1]

2]

3]

[4]

[5]

[6]
[7]
8]

9]

[10]
[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

K. Debnath and N. Kar, “Email spam detection using deep learning approach,” in 2022
International Conference on Machine Learning, Big Data, Cloud and Parallel Computing
(COM-IT-CON), IEEE, 2022, pp. 37-41.

D. Aprilianto, “SVM Optimization with Correlation Feature Selection Based Binary Particle
Swarm Optimization for Diagnosis of Chronic Kidney Disease,” ]. Soft Comput. Explor., vol.
1, no. 1, Sep. 2020, doi: 10.52465/joscex.v1il.1.

A. Nurdina and A. B. I. Puspita, “Naive Bayes and KNN for Airline Passenger Satisfaction
Classification: Comparative Analysis,” ]. Inf. Syst. Explor. Res., vol. 1, no. 2, Jul. 2023, doi:
10.52465/joiser.v1i2.167.

S. Nandhini and D. ]. Marseline, “Performance Evaluation of Machine Learning Algorithms
for Email Spam Detection,” Int. Conf. Emerg. Trends Inf. Technol. Eng. ic-ETITE 2020, pp. 1-
4, 2020, doi: 10.1109/ic-ETITE47903.2020.312.

N. Reska and K. Tsabita, “Comparison of KNN, naive bayes, and decision tree methods in
predicting the accuracy of classification of immunotherapy dataset,” ]. Student Res. Explor.,
vol. 1, no. 2, pp. 104-121, Jul. 2023, doi: 10.52465/josre.v1i2.170.

S. 0. Olatunji, “Improved email spam detection model based on support vector machines,”
Neural Comput. Appl., vol. 31, pp. 691-699, 2019.

A. Ghosh and A. Senthilrajan, “Comparison of machine learning techniques for spam
detection,” Multimed. Tools ApplL., pp. 1-28, 2023.

S. M. M. Hossain and I. H. Sarker, “Content-based Spam Email Detection Using N-gram
Machine Learning Approach,” 2021.

D. Mallampati and N. P. Hegde, “Feature Extraction and Classification of Email Spam
Detection Using IMTF-IDF+ Skip-Thought Vectors.,” Ingénierie des Systémes d’ Information,
vol. 27, no. 6, 2022.

G. A. Reddy and B. I. Reddy, “Classification of Spam Text using SVM,” ]. Univ. Shanghai Sci.
Technol,, vol. 23, no. 8, pp. 616-624, 2021.

C.-C. Chang and C.-]. Lin, “LIBSVM: a library for support vector machines,” ACM Trans. Intell.
Syst. Technol., vol. 2, no. 3, pp. 1-27, 2011.

P. Kaviani and S. Dhotre, “Short survey on naive bayes algorithm,” Int. ]. Adv. Eng. Res. Dev.,
vol. 4, no. 11, pp. 607-611, 2017.

T. M. Hansen and C. C. Finlay, “Use of machine learning to estimate statistics of the posterior
distribution in probabilistic inverse problems—An application to airborne EM data,” ].
Geophys. Res. Solid Earth, vol. 127, no. 11, p. e2022]B024703, 2022,

R. A. Cahya and F. A. Bachtiar, “Weakening Feature Independence of Naive Bayes Using
Feature Weighting and Selection on Imbalanced Customer Review Data,” in 2019 5th
International Conference on Science in Information Technology (ICSITech), IEEE, 2019, pp.
182-187.

B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas, “Taking the human out of
the loop: A review of Bayesian optimization,” Proc. IEEE, vol. 104, no. 1, pp. 148-175, 2015.
V. Plevris, G. Solorzano, N. P. Bakas, and M. E. A. Ben Seghier, “Investigation of performance
metrics in regression analysis and machine learning-based prediction models,” in 8th
European Congress on Computational Methods in Applied Sciences and Engineering
(ECCOMAS Congress 2022), European Community on Computational Methods in Applied
Sciences, 2022.

Y. Zhang, N. H. Kim, C. Park, and R. T. Haftka, “*Multifidelity surrogate based on single linear
regression,” AlAA |., vol. 56, no. 12, pp. 4944-4952, 2018.

Y. Fang, C. Liu, and Z. Li, “*Optimization method of aluminum electrolysis current efficiency

63



[19]

[20]

[21]
[22]

[23]
[24]

[25]

[26]

[27]

[28]

64

based on LightGBM-TPE,” in Second Guangdong-Hong Kong-Macao Greater Bay Area
Artificial Intelligence and Big Data Forum (AIBDF 2022), SPIE, 2023, pp. 158-163.

M. M. Ramadhan, I. S. Sitanggang, F. R. Nasution, and A. Ghifari, “Parameter tuning in random
forest based on grid search method for gender classification based on voice frequency,”
DEStech Trans. Comput. Sci. Eng., vol. 10, no. 2017, 2017.

W. Nugraha and A. Sasongko, “Hyperparameter Tuning on Classification Algorithm with
Grid Search,” Sist. J. Sist. Inf,, vol. 11, no. 2, pp. 391-401, 2022.

F. Qureshi, “*Spam Emails.”

P. Flach and M. Kull, “Precision-recall-gain curves: PR analysis done right,” Adv. Neural Inf.
Process. Syst., vol. 28, 2015.

Q. H. Nguyen et al., “Influence of data splitting on performance of machine learning models
in prediction of shear strength of soil,” Math. Probl. Eng., vol. 2021, pp. 1-15, 2021.

P. Rouzrokh et al., “Mitigating bias in radiology machine learning: 1. Data handling,” Radiol.
Artif. Intell., vol. 4, no. 5, p. 210290, 2022.

A. Datta, B. Jena, A. K. Dash, and R. Pradhan, “*A Comprehensive Analytical Study of
Traditional and Recent Development in Natural Language Processing,” Int. J., vol. 10, no. 5,
2021.

I. Boban, A. Doko, and S. Gotovac, “Sentence retrieval using stemming and lemmatization
with different length of the queries,” Adv. Sci. Technol. Eng. Syst., vol. 5, no. 3, pp. 349-354,
2020.

H. A. Almuzaini and A. M. Azmi, “Impact of stemming and word embedding on deep
learning-based Arabic text categorization,” IEEE Access, vol. 8, pp. 127913-127928, 2020.

I. Song and S. Kim, “AVILNet: A new pliable network with a novel metric for small-object
segmentation and detection in infrared images,” Remote Sens., vol. 13, no. 4, p. 555, 2021.



