The application of the tsukamoto fuzzy method in controlling the dryer for shrimp cracker hygienization

Main Article Content

Kusumaningtyas Tyas
Achmad Ubaidillah Ms
Diana Rahmawati

Abstract





The process of drying crackers is traditionally carried out on the side of the road and open places. The impact of drying on product quality, especially hygiene because it is directly contaminated with dust, pollutants and pathogenic microbes. Drying depends on the sun's heat which affects the continuity of production and the level of drought. How to identify food hygiene using an inductive proximity sensor functions as a metal content detector. Because the metal content when ingested by humans is very dangerous. Drying is affected by temperature, moisture content and capacity. Oven drying application is equipped with an inductive proximity sensor and a DS18B20 temperature sensor. The Fuzzy Tsukamoto method for weight problems is grouped into a separate set. So that it can process oven temperature data. The control system for drying 3 shelves of crackers totaling 250 takes 25.6 minutes, drying 5 shelves of crackers totaling 410 takes 31.6 minutes. The drying process temperature is 30OC-70OC, the temperature used is a minimum of 60OC and a maximum of 65OC. Drying near the maximum temperature experiences a slowdown. If drying is done traditionally with the help of sunlight it takes longer.





Article Details

Section
Articles

References

R. Anjali, A. Achankunju, U. Bini Babu, J. Varghese, and A. S. Varghese, “Clean and Hygienic Automated Butter Extractor for Households,” 2019 2nd Int. Conf. Intell. Comput. Instrum. Control Technol. ICICICT 2019, pp. 918–921, 2019, doi: 10.1109/ICICICT46008.2019.8993189.

Z. Floridiana, “The assessment of Food Handlers’ Hygiene and Environmental Sanitation in Tofu Home Industry Jombang 2018,” J. Kesehat. Lingkung., vol. 11, no. 1, p. 75, 2019, doi: 10.20473/jkl.v11i1.2019.75-82.

I. Juliyarsi, S. Melia, and D. Novia, “Perbaikan Sanitasi dan Higienis Kerupuk Kulit IKM Aulia di Kabupaten Agam, Provinsi Sumatera Barat,” J. Dedik. Masy., vol. 3, no. 1, pp. 26–35, 2019.

T. Agusa et al., “Exposure assessment for trace elements from consumption of marine fish in Southeast Asia,” Environ. Pollut., vol. 145, no. 3, pp. 766–777, 2007, doi: 10.1016/j.envpol.2006.04.034.

H. Guhathakurta and A. Kaviraj, “Heavy metal concentration in water, sediment, shrimp (Penaeus monodon) and Mullet (Liza parsia) in some brackish water ponds of Sunderban, India,” Mar. Pollut. Bull., vol. 40, no. 11, pp. 914–920, 2000, doi: 10.1016/S0025-326X(00)00028-X.

E. A. Renieri et al., “Cadmium, lead and mercury in muscle tissue of gilthead seabream and seabass: Risk evaluation for consumers,” Food Chem. Toxicol., vol. 124, no. 2019, pp. 439–449, 2019, doi: 10.1016/j.fct.2018.12.020.

M. A. Fatoni, S. Sumardianto, and L. Purnamayati, “THE ADDITION OF TILAPIA BONE NANOCALCIUM (Oreochromis niloticus) TO THE PHYSICO-CHEMICAL CHARACTERISTIC OF SHRIMP CRACKERS,” J. Teknol. Has. Pertan., vol. 14, no. 1, p. 1, 2021, doi: 10.20961/jthp.v14i1.42545.

T. S. Nugroho and U. Sukmawati, “Pengaruh Metode Pengeringan Kerupuk Udang Windu ( Paneaus Monodon ) Terhadap Daya Kembang Dan Nilai Organoleptik,” Manfish J., vol. 1, no. 2, pp. 107–114, 2020.

Purnomo dkk, “Implementasi Alat Pengering Cabinet Dryer untuk Mengatasi Masalah Pengeringan Kerupuk pada Usaha Kecil Kerupuk,” Pros. Semin. Nas. Publ., no. September, pp. 606–609, 2017.

A. Kusumaningrum, E. R. N. Herawati, A. Nurhikmat, and A. Restuti, “Influence of drying method on chemical properties of dried cracker,” IOP Conf. Ser. Earth Environ. Sci., vol. 462, no. 1, 2020, doi: 10.1088/1755-1315/462/1/012013.

F. B. Lilir, C. K. M. Palar, and N. N. Lontaan, “Pengaruh lama pengeringan terhadap proses Pengolahan kerupuk kulit sapi,” Zootec, vol. 41, no. 1, p. 214, 2021, doi: 10.35792/zot.41.1.2021.32667.

M. Akbar, D. Anjasmara, D. K. Diah, and K. Wardhani, “Jurnal Politeknik Caltex Riau Rancang Bangun Alat Pendeteksi Sampah Organik dan Anorganik Menggunakan Sensor Proximity dan NodeMCU ESP8266,” J. Komput. Terap., vol. 7, no. 2, pp. 290–299, 2021, [Online]. Available: https://jurnal.pcr.ac.id/index.php/jkt/.

A. Djafar, R. Gunawan, H. D. Haryono, and D. Suanggana, “Efektifitas Respon Sensor Proximity Induktif dalam Menyortir Pecahan Logam pada Model Conveyor,” vol. VIII, no. 1, pp. 4492–4499, 2023.

D. Purcaru, I. M. Gordan, and A. Purcaru, “Study, testing and application of proximity sensors for experimental training on measurement systems,” 2017 18th Int. Carpathian Control Conf. ICCC 2017, pp. 263–266, 2017, doi: 10.1109/CarpathianCC.2017.7970408.

C. Bartoletti, R. Buonanni, L. G. Fantasia, R. Frulla, W. Gaggioli, and G. Sacerdoti, “The design of a proximity inductive sensor,” Meas. Sci. Technol., vol. 9, no. 8, pp. 1180–1190, 1998, doi: 10.1088/0957-0233/9/8/007.

E. Indasyah, L. N. Khoirillah, A. Musthofa, and F. Istiqomah, “Toothpaste Tube Detector Inside Cardboard Using Proximity Inductive Sensor to Maintain Quantity of Product,” 2019 Int. Conf. Adv. Mechatronics, Intell. Manuf. Ind. Autom. ICAMIMIA 2019 - Proceeding, pp. 259–262, 2019, doi: 10.1109/ICAMIMIA47173.2019.9223391.

D. Awtrey, “The 1-wire weather station,” Sensors (Peterborough, NH), vol. 15, no. 6, pp. 34–40, 1998.

A. Salimun Thoha, B. Dwirastiaji, and S. Samsugi, “Monitoring Dan Kontrol Suhu Aquascape Menggunakan Arduino Dengan Sensor Suhu Ds18B20,” J. Ilm. Mhs. Kendali dan List., vol. 2, no. 2, pp. 2723–598, 2021.

A. Lopez-Vargas, M. Fuentes, M. V. Garcia, and F. J. Munoz-Rodriguez, “Low-Cost Datalogger Intended for Remote Monitoring of Solar Photovoltaic Standalone Systems Based on ArduinoTM,” IEEE Sens. J., vol. 19, no. 11, pp. 4308–4320, 2019, doi: 10.1109/JSEN.2019.2898667.

W. Zhang and T. Jiang, “Design of Biomolecule Interaction Detection System Based on Fiber Biosensor,” IEEE Sens. J., vol. 20, no. 16, pp. 8922–8929, 2020, doi: 10.1109/JSEN.2020.2984808.

C. Du, Q. Wang, X. Liu, Y. Zhao, X. Deng, and L. Cui, “Research and Application of Ice Thickness and Snow Depth Automatic Monitoring System,” IEEE Trans. Instrum. Meas., vol. 66, no. 2, pp. 325–331, 2017, doi: 10.1109/TIM.2016.2636518.

X. Deng, J. Cai, L. Li, B. Jia, L. Cui, and X. Tu, “Design and Application of the Measuring System of Ice Sheet Profile Based on Thermal Conductivity Difference of Medium,” IEEE Sens. J., vol. 21, no. 3, pp. 3822–3830, 2021, doi: 10.1109/JSEN.2020.3024848.

A. N. Fathoni, N. Hudallah, R. D. M. Putri, K. Khotimah, T. Rijanto, and M. Ma’Arif, “Design Automatic Dispenser for Blind People based on Arduino Mega using DS18B20 Temperature Sensor,” Proceeding - 2020 3rd Int. Conf. Vocat. Educ. Electr. Eng. Strength. Framew. Soc. 5.0 through Innov. Educ. Electr. Eng. Informatics Eng. ICVEE 2020, 2020, doi: 10.1109/ICVEE50212.2020.9243254.

Y. Wang, A. Yang, X. Chen, P. Wang, Y. Wang, and H. Yang, “A Deep Learning Approach for Blind Drift Calibration of Sensor Networks,” IEEE Sens. J., vol. 17, no. 13, pp. 4158–4171, 2017, doi: 10.1109/JSEN.2017.2703885.

F. Teknik and U. T. Madura, “Prototipe Alat Pengering Kerupuk Energi Matahari menggunakan Mikrokontroler Atmega16 berbasis Fuzzy Logic,” pp. 47–52.

I. Muhandhis, A. S. Ritonga, and M. H. Murdani, “Implementasi Metode Inferensi Fuzzy Tsukamoto Untuk Memprediksi Curah Hujan Dasarian Di Sumenep,” J. Ilm. Edutic Pendidik. dan Inform., vol. 8, no. 1, pp. 01–10, 2021, doi: 10.21107/edutic.v8i1.8907.

A. Z. Rakhman, H. N. Wulandari, G. Maheswara, and S. Kusumadewi, “Fuzzy Inference System Dengan Metode Tsukamoto Sebagai Pemberi Saran Pemilihan Konsentrasi (Studi Kasus: Jurusan Teknik Informatika Uii),” Semin. Nas. Apl. Teknol. Inf., vol. 0, no. 0, pp. 15–16, 2012, [Online]. Available: https://journal.uii.ac.id/Snati/article/view/2903.

T. Hidayat and M. Alaydrus, “Performance Analysis and Mitigation of Virtual Machine Server by using Naive Bayes Classification,” Proc. 2019 4th Int. Conf. Informatics Comput. ICIC 2019, pp. 0–4, 2019, doi: 10.1109/ICIC47613.2019.8985932.

M. Nizam, H. Maghfiroh, A. Ubaidilah, Inayati, and F. Adriyanto, “Constant current-fuzzy logic algorithm for lithium-ion battery charging,” Int. J. Power Electron. Drive Syst., vol. 13, no. 2, pp. 926–937, 2022, doi: 10.11591/ijpeds.v13.i2.pp926-937.

M. S. Anggreainy, B. Kurniawan, and F. I. Kurniadi, “Reduced False Alarm for Forest Fires Detection and Monitoring using Fuzzy Logic Algorithm,” Int. J. Adv. Comput. Sci. Appl., vol. 13, no. 7, pp. 535–541, 2022, doi: 10.14569/IJACSA.2022.0130764.

X. Wang and S. Li, “Multipoint temperature measurement system of hot pack based on DS18B20,” Proc. - 2010 WASE Int. Conf. Inf. Eng. ICIE 2010, vol. 1, pp. 26–29, 2010, doi: 10.1109/ICIE.2010.14.

Asrul, S. Sahidin, and S. Alam, “Mesin Cuci Tangan Otomatis Menggunakan Sensor Proximity Dan Dfplayer Mini Berbasis Arduino Uno,” J. Mosfet, vol. 1, no. 1, pp. 1–7, 2021.

N. Febriana, Yulkifli, and R. Wulan, “Pembuatan Pengukur Tekanan Pada Klem Arteri Mosquito Berbasis Sensor Proximity Lj12a3-4-Z / Bx Staf Pengajar Jurusan Fisika , Fmipa Universitas Negeri Padang,” Pillar Phys., vol. 9, pp. 25–32, 2017.

H. Meidia and S. Prawira, “Kajian Literatur : Perbandingan Sensor Dalam Mensortir Material Berbahan Metal,” Ultim. Comput. J. Sist. Komput., vol. 11, no. 1, pp. 16–19, 2019, doi: 10.31937/sk.v11i1.1085.

T. Rocha, H. Ramos, A. L. Ribeiro, and D. Pasadas, “Sub-surface defect detection with motion induced eddy currents in aluminium,” Conf. Rec. - IEEE Instrum. Meas. Technol. Conf., vol. 2015-July, pp. 930–934, 2015, doi: 10.1109/I2MTC.2015.7151394.

Abstract viewed = 202 times