Online payment fraud prediction with machine learning approach using naive bayes algorithm
Main Article Content
Abstract
The increase in e-commerce has provided easy access for the public, but it also opens up opportunities for fraud in online transactions. Payment fraud is also a problem that often arises in transactions through electronic media. This research aims to analyze payment fraud in e-commerce transactions. This research uses a machine learning approach using the Naive Bayes algorithm. This research uses online transaction datasets involving various attributes such as payment and shipping methods. The developed Naive Bayes model achieved an accuracy of 61.03% with K = 7. The evaluation shows a balance between precision (59.46%) and recall (62.05%), although this study is limited by data quality and basic assumptions of Naive Bayes. In future research, it is worth considering the use of additional features or more complex data processing to improve the performance of fraud detection in online transactions. This research provides important insights in the fight against financial crime in the context of electronic commerce.
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
L. Y. Siregar and M. I. P. Nasution, “Perkembangan Teknologi Informasi Terhadap Peningkatan Bisnis Online,” HIRARKI J. Ilm. Manaj. Dan Bisnis, vol. 2, no. 1, 2020.
A. G. Gani, “PENGENALAN TEKNOLOGI INTERNET SERTA DAMPAKNYA,” J. Sist. Inf. Univ. Suryadarma, vol. 2, no. 2, Jun. 2014, doi: 10.35968/jsi.v2i2.49.
T. Y. Rahmanto, “Penegakan Hukum terhadap Tindak Pidana Penipuan Berbasis Transaksi Elektronik,” J. Penelit. Huk. Jure, vol. 19, no. 1, p. 31, Mar. 2019, doi: 10.30641/dejure.2019.V19.31-52.
N. S. Lubis and M. I. P. Nasution, “PERKEMBANGAN TEKNOLOGI INFORMASI DAN DAMPAKNYA PADA MASYARAKAT,” Kohesi J. Sains Dan Teknol., vol. 1, no. 12, pp. 41–50, 2023, doi: https://doi.org/10.3785/kohesi.v1i12.1311.
A. E. Saragih, M. F. Bagaskara, and Mulyadi, “PERLINDUNGAN HUKUM TERHADAP KONSUMEN DALAM TRANSAKSI E-COMMERCE,” Civilia J. Kaji. Huk. Dan Pendidik. Kewarganegaraan, vol. 2, no. 1, pp. 145–155, 2023, doi: https://doi.org/10.572349/civilia.v2i2.414.
J. Solim, M. S. Rumapea, Agung Wijaya, B. M. Manurung, and W. Lionggodinata, “UPAYA PENANGGULANGAN TINDAK PIDANA PENIPUAN SITUS JUAL BELI ONLINE DI INDONESIA,” J. Huk. Samudra Keadilan, vol. 14, no. 1, pp. 97–110, May 2019, doi: 10.33059/jhsk.v14i1.1157.
A. A. Fauzi et al., PEMANFAATAN TEKNOLOGI INFORMASI DI BERBAGAI SEKTOR PADA MASA SOCIETY 5.0. Jambi: PT. Sonpedia Publishing Indonesia, 2023.
S. Kadir, “Keuangan Terdesentralisasi (DeFi) Dan Teknologi Keuangan (FinTech) Syariah Dalam Sistem Keuangan Abad 21,” J. Account. Financ., vol. 5, no. 2, 2023.
P. R. Silalahi, A. S. Daulay, T. S. Siregar, and A. Ridwan, “Analisis Keamanan Transaksi E-Commerce Dalam Mencegah Penipuan Online,” Profit J. Manajemen, Bisnis Dan Akunt., vol. 1, no. 4, 2022, doi: https://doi.org/10.58192/profit.v1i4.481.
E. S. Widyastuti, T. R. Kamila, and P. A. A. Putra, “Perlindungan Konsumen dalam Transaksi e-Commerce: suatu Perspektif Hukum Islam,” Milkiyah J. Huk. Ekon. Syariah, vol. 1, no. 2, 2022, doi: 10.46870/milkiyah.v1i2.161.
C. J. L. Murray et al., “Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019,” Lancet, vol. 396, no. 10258, pp. 1223–1249, Oct. 2020, doi: 10.1016/S0140-6736(20)30752-2.
G. Tong and J. Shen, “Financial transaction fraud detector based on imbalance learning and graph neural network,” Appl. Soft Comput., vol. 149, p. 110984, Dec. 2023, doi: 10.1016/j.asoc.2023.110984.
Y. Zhang, J. Bian, and W. Zhu, “Trust fraud: A crucial challenge for China’s e-commerce market,” Electron. Commer. Res. Appl., vol. 12, no. 5, pp. 299–308, Sep. 2013, doi: 10.1016/j.elerap.2012.11.005.
J. Song, X. Qu, Z. Hu, Z. Li, J. Gao, and J. Zhang, “A subgraph-based knowledge reasoning method for collective fraud detection in E-commerce,” Neurocomputing, vol. 461, pp. 587–597, Oct. 2021, doi: 10.1016/j.neucom.2021.03.134.
Alvina Felicia Watratan, Arwini Puspita. B, and Dikwan Moeis, “Implementasi Algoritma Naive Bayes Untuk Memprediksi Tingkat Penyebaran Covid-19 Di Indonesia,” J. Appl. Comput. Sci. Technol., vol. 1, no. 1, pp. 7–14, Jul. 2020, doi: 10.52158/jacost.v1i1.9.
H. A. Ahmad, A. Novianti Winarlie, and E. Miranda, “Indonesia Covid-19 Pandemic Social Media Analysis With Text Mining,” in 2022 International Conference on Information Management and Technology (ICIMTech), IEEE, Aug. 2022, pp. 94–99. doi: 10.1109/ICIMTech55957.2022.9915051.
M. AminiMotlagh, H. Shahhoseini, and N. Fatehi, “A reliable sentiment analysis for classification of tweets in social networks,” Soc. Netw. Anal. Min., vol. 13, no. 1, p. 7, Dec. 2022, doi: 10.1007/s13278-022-00998-2.
A. V. D. Sano, A. A. Stefanus, E. D. Madyatmadja, H. Nindito, A. Purnomo, and C. P. M. Sianipar, “Proposing a visualized comparative review analysis model on tourism domain using Naïve Bayes classifier,” Procedia Comput. Sci., vol. 227, pp. 482–489, 2023, doi: 10.1016/j.procs.2023.10.549.
Ö. F. Arar and K. Ayan, “A feature dependent Naive Bayes approach and its application to the software defect prediction problem,” Appl. Soft Comput., vol. 59, pp. 197–209, Oct. 2017, doi: 10.1016/j.asoc.2017.05.043.
B. G. Marcot and A. M. Hanea, “What is an optimal value of k in k-fold cross-validation in discrete Bayesian network analysis?,” Comput. Stat., vol. 36, no. 3, pp. 2009–2031, Sep. 2021, doi: 10.1007/s00180-020-00999-9.
S. Patil, V. Nemade, and P. K. Soni, “Predictive Modelling For Credit Card Fraud Detection Using Data Analytics,” Procedia Comput. Sci., vol. 132, pp. 385–395, 2018, doi: 10.1016/j.procs.2018.05.199.