Application of k-nearest neighbor algorithm in classification of engine performance in car companies using Rapidminer
Main Article Content
Abstract
Implementation of the k-Nearest Neighbor (k-NN) algorithm in the classification of CAR Car company engine performance using RapidMiner software. The company's engine performance is a very important aspect in the automotive industry that greatly affects operational efficiency and customer satisfaction. As an effort to monitor and improve engine performance, classification is an important key to identify machines that are feasible and require repair. The dataset used is a generated dataset from the AI Chat GPT bot whose prompts have been adapted to the research needs. The k-NN algorithm was chosen due to its ability to produce accurate predictions. The k-NN classification method utilizes training and testing data and calculates the distance between the data to determine the appropriate class. The results of this study show excellent performance in terms of accuracy, precision, and recall. The highest accuracy is 90.62% at the value of k = 2. The highest precision and recall are 100% and 93.75% at the values of k = 2, k = 4, and k = 7.
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Z. He, L. Sun, Y. Hijioka, K. Nakajima, and M. Fujii, “Systematic review of circular economy strategy outcomes in the automobile industry,” Resour. Conserv. Recycl., vol. 198, p. 107203, Nov. 2023, doi: 10.1016/j.resconrec.2023.107203.
D. Dhabliya, A. H. Alkkhayat, J. Sivakumar, R. Bhokde, and M. B, “Design and Analysis of Four-Wheeler Chassis for Improved Performance,” in 2023 4th International Conference on Computation, Automation and Knowledge Management (ICCAKM), Dec. 2023, pp. 1–8. doi: 10.1109/ICCAKM58659.2023.10449564.
A. P. Lubis, “Analisis Keandalan dan Pemeliharaan Mesin Industri,” 2024. [Online]. Available: https://coursework.uma.ac.id/index.php/mesin/article/view/768
K. Kudelina, B. Asad, T. Vaimann, A. Rassõlkin, A. Kallaste, and H. Van Khang, “Methods of Condition Monitoring and Fault Detection for Electrical Machines,” Energies, vol. 14, no. 22, p. 7459, Nov. 2021, doi: 10.3390/en14227459.
Q. A. A’yuniyah and M. Reza, “Penerapan Algoritma K-Nearest Neighbor Untuk Klasifikasi Jurusan Siswa Di Sma Negeri 15 Pekanbaru,” Indones. J. Inform. Res. Softw. Eng., vol. 3, no. 1, pp. 39–45, 2023, doi: 10.57152/ijirse.v3i1.484.
N. B. Putri and A. W. Wijayanto, “Analisis Komparasi Algoritma Klasifikasi Data Mining Dalam Klasifikasi Website Phishing,” Komputika J. Sist. Komput., vol. 11, no. 1, pp. 59–66, 2022, doi: 10.34010/komputika.v11i1.4350.
E. W. Jumadi, “Penggunaan K-NN (K-Nearest Neighbor) Untuk Klasifikasi Teks Berita yang Tak-Terkelompokkan pada Saat Pengklasteran Oleh STC (Suffix Tree Clustering),” Istek, vol. 9, no. 1, pp. 50–81, 2015.
N. E. Md Isa, A. Amir, M. Z. Ilyas, and M. S. Razalli, “The Performance Analysis of K-Nearest Neighbors (K-NN) Algorithm for Motor Imagery Classification Based on EEG Signal,” MATEC Web Conf., vol. 140, p. 01024, Dec. 2017, doi: 10.1051/matecconf/201714001024.
S. Mohsen, A. Elkaseer, and S. G. Scholz, “Human Activity Recognition Using K-Nearest Neighbor Machine Learning Algorithm,” 2022, pp. 304–313. doi: 10.1007/978-981-16-6128-0_29.
K. Samruddhi and R. Ashok Kumar, “Used Car Price Prediction using K-Nearest Neighbor Based Model,” Int. J. Innov. Res. Appl. Sci. Eng., vol. 4, no. 2, pp. 629–632, Aug. 2020, doi: 10.29027/IJIRASE.v4.i2.2020.629-632.
M. R. Alghifari and A. P. Wibowo, “K-NN 14,” J. Teknol. Manaj. Inform., vol. 5, no. 1, 2019.
A. Oluwaseun and M. S. Chaubey, “Data Mining Classification Techniques on the analysis of student performance,” Glob. Sci. J., vol. 7, no. April, pp. 79–95, 2019, doi: 10.11216/gsj.2019.04.19671.
A. P. Wibawa, M. G. A. Purnama, M. F. Akbar, and F. A. Dwiyanto, “Metode-metode Klasifikasi,” Pros. Semin. Ilmu Komput. dan Teknol. Inf., vol. 3, no. 1, p. 134, 2018.
N. Nuraeni, “Klasifikasi Data Mining untuk Prediksi Potensi Nasabah dalam Membuat Deposito Berjangka Data Mining Classification for Predicting Customer Potential in Making Term Deposits,” J. Ilm. Intech Inf. Technol. J. UMUS, vol. 3, no. 01, pp. 65–75, 2021.
D. Cahyanti, A. Rahmayani, and S. A. Husniar, “Analisis performa metode K-NN pada Dataset pasien pengidap Kanker Payudara,” Indones. J. Data Sci., vol. 1, no. 2, pp. 39–43, 2020, doi: 10.33096/ijodas.v1i2.13.
H. P. Herlambang, F. Saputra, M. H. Prasetiyo, D. Puspitasari, and D. Nurlaela, “Perbandingan Klasifikasi Tingkat Penjualan Buah di Supermarket dengan Pendekatan Algoritma Decision Tree, Naive Bayes dan K-Nearest Neighbor,” J. Insa. - J. Inf. Syst. Manag. Innov., vol. 3, no. 1, pp. 21–28, 2023, doi: 10.31294/jinsan.v3i1.2097.
S. Prayogo, A. A. Chamid, and A. C. Murti, “Perancangan Sistem Klasifikasi Jenis Bunga Mawar Menggunakan Metode K-Nearest Neighbor (K-NN),” Indones. J. Technol. Informatics Sci., vol. 3, no. 2, pp. 52–56, 2022, doi: 10.24176/ijtis.v3i2.7881.
Nikmatun, I. Alvi, Waspada, and Indra, “Implementasi Data Mining Untuk Klasifikasi Masa Studi Mahasiswa Menggunakan Algoritma K-Nearest Neighbor,” J. SIMETRIS, vol. 10, no. 2, pp. 421–432, 2019.
I. Nawangsih and J. Sahar, “Penerapan Data Mining Untuk Analisa Kualitas Produk Welding Dengan Algoritma Naïve Bayes Dan C4.5 Pada Pt. Karya Bahana Unigam,” Sigma J. Teknol. Pelita Bangsa, vol. 13, no. 1, pp. 21–26, 2022.
H. Paul, A. Sartika Wiguna, and H. Santoso, “Penerapan Algoritma Support Vector Machine Dan Naive Bayes Untuk Klasifikasi Jenis Mobil Terlaris Berdasarkan Produksi Di Indonesia,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 1, pp. 39–44, 2023, doi: 10.36040/jati.v7i1.5555.
H. Mubarok, S. Murni, and M. M. Santoni, “Penerapan Algoritma K-Nearest Neighbor untuk Klasifikasi Tingkat Kematangan Buah Tomat Berdasarkan Fitur Warna,” Semin. Nas. Mhs. Ilmu Komput. dan Apl. Jakarta-Indonesia, no. April, pp. 773–782, 2021.