Classification of travel class with k-nearest neighbors algorithm using rapidminer

Main Article Content

Dina Wachidah Septiana
Puan Bening Pastika

Abstract

he tourism industry in Indonesia plays an important role in the national economy. The selection of travel class according to the needs and budget of tourists is an important aspect in the tourism industry. This research aims to develop a travel class classification model using dummy datasets and the K-Nearest Neighbors (KNN) algorithm with RapidMiner software. The travel class dummy data set was obtained from the internet and modified according to research needs. The KNN algorithm was used to classify new travel classes based on previously classified dummy data. These dummy data were preprocessed and analyzed using RapidMiner software. The performance of the KNN model was evaluated using accuracy, precision, recall and F1-score. The results showed that the KNN algorithm with the values k = 1-2, k = 3-6, k = 8-10, k = 11-14 and k = 15 resulted in accuracy of 35.71%, 39.29%, 48.26%, 46.43% and 50.00%, respectively. This shows that the KNN algorithm with a value of k=15 produces the highest accuracy that can be effectively used to classify new travel classes based on dummy data.

Article Details

Section
Articles

References

REFERENCES

N. Nasrulloh, E. M. Adiba, and M. N. Efendi, “Pengembangan Potensi Pariwisata Halal Pesisir Bangkalan Madura: Identifikasi Peranan Bank Syariah,” Muslim Herit., vol. 8, no. 1, pp. 79–102, Jun. 2023, doi: 10.21154/muslimheritage.v8i1.4989.

L. K. H. K. Yuni, “Analysis of Domestic Tourist Travel Preferences Post-Covid-19 Pandemic,” J. Appl. Sci. Travel Hosp., vol. 3, no. 2, pp. 80–88, Sep. 2020, doi: 10.31940/jasth.v3i2.2052.

E. Sezgen, K. J. Mason, and R. Mayer, “Voice of airline passenger: A text mining approach to understand customer satisfaction,” J. Air Transp. Manag., vol. 77, pp. 65–74, Jun. 2019, doi: 10.1016/j.jairtraman.2019.04.001.

E. Fernando, M. Irsan, D. F. Murad, S. Surjandy, and Djamaludin, “Mobile-Based Geographic Information System For Culinary Tour Mapping In Indonesia,” in 2019 International Conference on Information and Communications Technology (ICOIACT), IEEE, Jul. 2019, pp. 28–31. doi: 10.1109/ICOIACT46704.2019.8938511.

LOUIS MADAERDO SOTARJUA and DIAN BUDHI SANTOSO, “PERBANDINGAN ALGORITMA KNN, DECISION TREE,*DAN RANDOM*FOREST PADA DATA IMBALANCED CLASS UNTUK KLASIFIKASI PROMOSI KARYAWAN,” J. INSTEK (Informatika Sains dan Teknol., vol. 7, no. 2, pp. 192–200, Aug. 2022, doi: 10.24252/instek.v7i2.31385.

Sopiatul Ulum, R. F. Alifa, P. Rizkika, and C. Rozikin, “Perbandingan Performa Algoritma KNN dan SVM dalam Klasifikasi Kelayakan Air Minum,” Gener. J., vol. 7, no. 2, pp. 141–146, Jul. 2023, doi: 10.29407/gj.v7i2.20270.

S. M. Dol and P. M. Jawandhiya, “Use of Data mining Tools in Educational Data Mining,” in 2022 Fifth International Conference on Computational Intelligence and Communication Technologies (CCICT), IEEE, Jul. 2022, pp. 380–387. doi: 10.1109/CCiCT56684.2022.00075.

A. Wijayanto, J. F. A. Bernardo, and S. Pamungkas, “Analisis Klasifikasi Kepuasan Penumpang Maskapai Penerbangan Menggunakan Algoritma Naïve Bayes,” J. Sains Komput. dan Teknol. Inf., vol. 3, no. 2, pp. 97–103, May 2021, doi: 10.33084/jsakti.v3i2.2041.

Q. A. A’yuniyah and M. Reza, “Penerapan Algoritma K-Nearest Neighbor Untuk Klasifikasi Jurusan Siswa Di Sma Negeri 15 Pekanbaru,” Indones. J. Inform. Res. Softw. Eng., vol. 3, no. 1, pp. 39–45, Mar. 2023, doi: 10.57152/ijirse.v3i1.484.

X. Liu, Y. Song, and Z. Li, “Dummy Data Attacks in Power Systems,” IEEE Trans. Smart Grid, vol. 11, no. 2, pp. 1792–1795, Mar. 2020, doi: 10.1109/TSG.2019.2929702.

C. N. Keiser and J. N. Pruitt, “Correction to ‘Personality composition is more important than group size in determining collective foraging behaviour in the wild,’” Proc. R. Soc. B Biol. Sci., vol. 287, no. 1928, p. 20201164, Jun. 2020, doi: 10.1098/rspb.2020.1164.

H. Han, M. Li, J. Qiao, Q. Yang, and Y. Peng, “Filter Transfer Learning Algorithm for Missing Data Imputation in Wastewater Treatment Process,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 12, pp. 12649–12662, Dec. 2023, doi: 10.1109/TKDE.2023.3270118.

R. Baji Syadewo and N. Riza, “KLASIFIKASI PENERIMAAN DANA BANTUAN PADA DUSUN JATI BENING,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 2, pp. 1220–1226, Sep. 2023, doi: 10.36040/jati.v7i2.6766.

P. W. Sudarmadji, N. Fallo, and Y. S. Peli, “KOMPARASI ALGORITMA KLASIFIKASI UNTUK MEMPREDIKSI KELULUSAN MAHASISWA PROGRAM STUDI TEKNIK KOMPUTER JARINGAN,” J. Ilm. Flash, vol. 8, no. 2, p. 109, Feb. 2023, doi: 10.32511/flash.v8i2.998.

S. Anif, S. Sutama, H. J. Prayitno, and S. Sukartono, “EVALUASI PELATIHAN PENINGKATAN KOMPETENSI PROFESIONAL GURU SEKOLAH MENENGAH PERTAMA,” Manaj. Pendidik., vol. 14, no. 2, Jan. 2020, doi: 10.23917/jmp.v14i2.9966.

M. Munir, E. Nababan, and T. Tulus, “Learning Vector Quantization with Local Mean Based to Determine K Value in the K-Nearest Neighbor Method,” in Proceedings of the Proceedings of the 1st International Conference on Management, Business, Applied Science, Engineering and Sustainability Development, ICMASES 2019, 9-10 February 2019, Malang, Indonesia, EAI, 2020. doi: 10.4108/eai.3-8-2019.2290750.

P. Kumar Sinha, “Modifying one of the Machine Learning Algorithms kNN to Make it Independent of the Parameter k by Re-defining Neighbor,” Int. J. Math. Sci. Comput., vol. 6, no. 4, pp. 12–25, Aug. 2020, doi: 10.5815/ijmsc.2020.04.02.

R. Mulyani, D. Atmajaya, and F. Umar, “Klasifikasi Kematangan Buah Pala Menggunakan Metode K Nearest Neighbor (k-NN) Dengan Memanfaatkan Teknologi Citra Digital,” Bul. Sist. Inf. dan Teknol. Islam, vol. 2, no. 3, pp. 140–146, Aug. 2021, doi: 10.33096/busiti.v2i3.826.

L. Karlina and O. Nurdiawan, “PENERAPAN K- MEDOIDS DALAM KLASIFIKASI PERSEBARAN LAHAN KRITIS DI JAWA BARAT BERDASARKAN KABUPATEN/KOTA,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 1, pp. 527–532, Mar. 2023, doi: 10.36040/jati.v7i1.6348.

W. D. Budimulia and F. Ridho, “PENERAPAN KOMPUTASI PARALEL PADA APLIKASI DATA CLEANING MULTIPLE DATA EDIT,” Semin. Nas. Off. Stat., vol. 2019, no. 1, pp. 7–14, May 2020, doi: 10.34123/semnasoffstat.v2019i1.120.

W. Saputro and D. B. Sumantri, “Implementasi Citra Digital Dalam Klasifikasi Jenis Buah Anggur Dengan Algoritma K-Nearest Neighbors (KNN) Dan Data Augmentasi,” INTECOMS J. Inf. Technol. Comput. Sci., vol. 5, no. 2, pp. 248–253, Dec. 2022, doi: 10.31539/intecoms.v5i2.4337.

Abstract viewed = 47 times