Classification of risk of death from heart disease or cigarette influence using the k-nearest neighbors (KNN) method
Main Article Content
Abstract
Heart disease is one of the leading causes of death in Indonesia. In addition to coronary heart disease, smoking is the leading contributor to the death rate in Indonesia. This study aims to analyze the risk of death with the main variables of heart disease history and smoking history. This study classifies the risk of death of heart disease sufferers and smokers using the KNearest Neighbors (KNN) algorithm. The results showed that the KNN model had an accuracy of 52.38% in predicting the risk of death of smokers and heart disease patients. Confusion matrix analysis revealed that the model performed well in predicting classes 0 and 2, but had difficulty in predicting class 1. This study shows that KNN can be used to predict the risk of death of smokers and patients with heart disease with a satisfactory success rate.
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
A. B. Wibisono and A. Fahrurozi, “PERBANDINGAN ALGORITMA KLASIFIKASI DALAM PENGKLASIFIKASIAN DATA PENYAKIT JANTUNG KORONER,” J. Ilm. Teknol. dan Rekayasa, vol. 24, no. 3, pp. 161–170, Dec. 2019, doi: 10.35760/tr.2019.v24i3.2393.
T. B. Anwar, “Dislipidemia Sebagai Faktor Resiko Penyakit Jantung Koroner,” Universitas Sumatera Utara, 2004.
A. Daza et al., “Stacking ensemble based hyperparameters to diagnosing of heart disease: Future works,” Results Eng., vol. 21, p. 101894, Mar. 2024, doi: 10.1016/j.rineng.2024.101894.
T. K. Ningsih and H. Zakaria, “Implementasi Algoritma K-Nearest Neighbor Pada Sistem Deteksi Penyakit Jantung Studi Kasus : Klinik Makmur Jaya,” Log. J. Ilmu Komput. Dan Pendidik., vol. 2, no. 1, 2023.
L. Ghani, M. D. Susilawati, and H. Novriani, “Faktor Risiko Dominan Penyakit Jantung Koroner di Indonesia,” Bul. Penelit. Kesehat., vol. 44, no. 3, 2016.
A. Samosir, M. S. Hasibuan, W. E. Justino, and T. Hariyono, “Komparasi Algoritma Random Forest, Naïve Bayes dan KNearest Neighbor Dalam klasifikasi Data Penyakit Jantung,” Pros. Semin. Nas. Darmajaya, vol. 1, 2021.
D. Pradana, M. Luthfi Alghifari, M. Farhan Juna, and D. Palaguna, “Klasifikasi Penyakit Jantung Menggunakan Metode Artificial Neural Network,” Indones. J. Data Sci., vol. 3, no. 2, pp. 55–60, Jul. 2022, doi: 10.56705/ijodas.v3i2.35.
N. K. Noriani, I. W. G. A. E. Putra, and I. N. M. Karmaya, “Paparan Asap Rokok dalam Rumah Terhadap Risiko Peningkatan Kelahiran Bayi Prematur di Kota Denpasar,” Public Heal. Prev. Med. Arch., vol. 3, no. 1, pp. 55–59, Jul. 2015, doi: 10.15562/phpma.v3i1.88.
K. N. Aziizah, I. Setiawan, and S. Lelyana, “Hubungan Tingkat Pengetahuan Tentang Dampak Rokok Terhadap Kesehatan Rongga Mulut dengan Tingkat Motivasi Berhenti Merokok pada Mahasiswa Universitas Kristen Maranatha,” SONDE (Sound Dent., vol. 3, no. 1, pp. 16–21, Jul. 2019, doi: 10.28932/sod.v3i1.1774.
Ghany Vhiera Nizamie and A. Kautsar, “Analisis Faktor-Faktor Yang Mempengaruhi Konsumsi Rokok di Indonesia,” Kaji. Ekon. dan Keuang., vol. 5, no. 2, pp. 158–170, Nov. 2021, doi: 10.31685/kek.v5i2.1005.
A. M. B. Arisani, Y. Hermawan, and N. Nurhadi, “Wanita dan Rokok ( Studi Fenomenologi Dramaturgi Perilaku Merokok Mahasiswi Universitas Sebelas Maret),” J. Pendidik. Tambusai, vol. 7, no. 1, pp. 230–236, 2023, doi: https://doi.org/10.31004/jptam.v7i1.5284.
F. Mesquita and G. Marques, “An explainable machine learning approach for automated medical decision support of heart disease,” Data Knowl. Eng., p. 102339, Jun. 2024, doi: 10.1016/j.datak.2024.102339.
G. Guo, H. Wang, D. Bell, Y. Bi, and K. Greer, “KNN Model-Based Approach in Classification,” 2003, pp. 986–996. doi: 10.1007/978-3-540-39964-3_62.
A. Almomany, W. R. Ayyad, and A. Jarrah, “Optimized implementation of an improved KNN classification algorithm using Intel FPGA platform: Covid-19 case study,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 6, pp. 3815–3827, Jun. 2022, doi: 10.1016/j.jksuci.2022.04.006.
S. Ray, “A Quick Review of Machine Learning Algorithms,” in 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), IEEE, Feb. 2019, pp. 35–39. doi: 10.1109/COMITCon.2019.8862451.
R. Doll, R. Peto, K. Wheatley, R. Gray, and I. Sutherland, “Mortality in relation to smoking: 40 years’ observations on male British doctors,” BMJ, vol. 309, no. 6959, pp. 901–911, Oct. 1994, doi: 10.1136/bmj.309.6959.901.
F. T. Admojo and Ahsanawati, “Klasifikasi Aroma Alkohol Menggunakan Metode KNN,” Indones. J. Data Sci., vol. 1, no. 2, pp. 34–38, Jul. 2020, doi: 10.33096/ijodas.v1i2.12.
Y. Pratama, A. Prayitno, D. Azrian, N. Aini, Y. Rizki, and E. Rasywir, “Klasifikasi Penyakit Gagal Jantung Menggunakan Algoritma K-Nearest Neighbor,” Bull. Comput. Sci. Res., vol. 3, no. 1, pp. 52–56, Dec. 2022, doi: 10.47065/bulletincsr.v3i1.203.
I. P. Sari and I. H. Batubara, “Perancangan Sistem Informasi Laporan Keuangan Pada Apotek Menggunakan Algoritma K-NN,” Semin. Nas. Teknol. Edukasi Sos. Dan Hum., vol. 1, no. 1, pp. 692–698, 2021, doi: https://doi.org/10.53695/sintesa.v1i1.398.
D. Cahyanti, A. Rahmayani, and S. A. Husniar, “Analisis performa metode Knn pada Dataset pasien pengidap Kanker Payudara,” Indones. J. Data Sci., vol. 1, no. 2, pp. 39–43, Jul. 2020, doi: 10.33096/ijodas.v1i2.13.