Optimising SVM models in text mining to see the sentiments and user complaints of DANA mobile application through play store reviews

Main Article Content

Arell Saverro Biyantoro
Budi Prasetiyo

Abstract

Dana is a mobile electronic wallet application available for download on Google Play Store. Users can rate and comment on this application directly through the review section on the platform. By utilizing these user reviews, research can be conducted to identify the main complaints experienced by Dana application users. This research uses Support Vector Machine (SVM) sentiment analysis to classify reviews and Latent Dirichlet Allocation (LDA) to map negative comment topics. LDA extracts several representative words or tokens that are grouped to form specific themes. The findings show that the most common sources of user complaints are related to transaction issues, premium features, and app updates. These insights can provide valuable input for developers to improve the overall quality and user experience of the Dana app.

Article Details

Section
Articles

References

A. Gunawan, N. Wahyuni, and V. Nursekha, “Kualitas Pelayanan Aplikasi Dana Terhadap Kepuasan Konsumen,” J. Integr. Syst., vol. 4, no. 2, pp. 181–198, Dec. 2021, doi: 10.28932/jis.v4i2.3861.

R. Ardila and T. Sutabri, “Analisis Sudut Pandang Mahasiswa Dalam Performa dan Efisiensi Aplikasi Dana Dalam Kehidupan Sehari Hari Menggunakan Metode Deskriptif,” IJM Indones. J. Multidiscip., vol. 2, no. 1, 2024.

L. Pransiska and F. A. Nofirda, “Dampak Ekonomi Digital terhadap Penggunaan Aplikasi DANA pada Gen Z di Kota Pekanbaru,” J. Pendidik. Tambusai, vol. 7, no. 3 SE-Articles of Research, pp. 26604–26609, Nov. 2023, doi: 10.31004/jptam.v7i3.10901.

F. A. Larasati, D. E. Ratnawati, and B. T. Hanggara, “Analisis Sentimen Ulasan Aplikasi Dana dengan Metode Random Forest,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 6, no. 9 SE-, pp. 4305–4313, Sep. 2022, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/11562

N. Agustina, D. H. Citra, W. Purnama, C. Nisa, and A. R. Kurnia, “Implementasi Algoritma Naive Bayes untuk Analisis Sentimen Ulasan Shopee pada Google Play Store,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 2, no. 1, pp. 47–54, Apr. 2022, doi: 10.57152/malcom.v2i1.195.

S. Fransiska, R. Rianto, and A. I. Gufroni, “Sentiment Analysis Provider by.U on Google Play Store Reviews with TF-IDF and Support Vector Machine (SVM) Method,” Sci. J. Informatics, vol. 7, no. 2, 2020.

S. A. Harun, Hapsawati Taan, and Djoko Lesmana Radji, “Pengaruh Kualitas Pelayanan Terhadap Kepuasan Pelanggan Maxim Bentor Gorontalo (Studi Pada Mahasiswa Fakultas Ekonomi Ung),” JEMSI (Jurnal Ekon. Manajemen, dan Akuntansi), vol. 10, no. 1, pp. 167–174, Feb. 2024, doi: 10.35870/jemsi.v10i1.1814.

H. Setiawan and D. Novita, “Analisis Kepuasan Pengguna Aplikasi KAI Access Sebagai Media Pemesanan Tiket Kereta Api Menggunakan Metode EUCS,” J. Teknol. Sist. Inf., vol. 2, no. 2, pp. 162–175, Sep. 2021, doi: 10.35957/jtsi.v2i2.1375.

R. Rofik, D. A. A. Pertiwi, and M. A. Muslim, “Improvement accuracy of gradient boosting in app rating prediction on google playstore,” J. Numer. Optim. Technol. Manag., vol. 1, no. 2, 2023.

D. B. Santoso, A. Munna, and D. H. Untari Ningsih, “Improved playstore review sentiment classification accuracy with stacking ensemble,” J. Soft Comput. Explor., vol. 5, no. 1, pp. 38–45, Mar. 2024, doi: 10.52465/joscex.v5i1.247.

S. E. Zaluchu, “Strategi Penelitian Kualitatif dan Kuantitatif Di Dalam Penelitian Agama,” Evang. J. Teol. Injili dan Pembin. Warga Jemaat, vol. 4, no. 1, p. 28, Jan. 2020, doi: 10.46445/ejti.v4i1.167.

F. F. Roji, N. G. Ginasta, Y. Cahyan, D. Rahayu, and D. Ramdani, “Review Analysis of SatuSehat Application Using Support Vector Machine and Latent Dirichlet Allocation Modeling,” J. RISTEC Res. Inf. Syst. Technol., vol. 4, no. 1, 2023.

J. Budiarto, “Identifikasi Kebutuhan Masyarakat Nusa Tenggara Barat pada Pandemi Covid-19 di Media Sosial dengan Metode Crawling,” JTIM J. Teknol. Inf. dan Multimed., vol. 2, no. 4, pp. 244–250, Feb. 2021, doi: 10.35746/jtim.v2i4.119.

R. Eliviani and D. D. Wazaumi, “Exploring Sentiment Trends: Deep Learning Analysis of Social Media Reviews on Google Play Store by Netizens,” Int. J. Adv. Data Inf. Syst., vol. 5, no. 1, pp. 62–70, Mar. 2024, doi: 10.59395/ijadis.v5i1.1318.

S. Khomsah and Agus Sasmito Aribowo, “Text-Preprocessing Model Youtube Comments in Indonesian,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 4, pp. 648–654, Aug. 2020, doi: 10.29207/resti.v4i4.2035.

A. E. Budiman and A. Widjaja, “Analisis Pengaruh Teks Preprocessing Terhadap Deteksi Plagiarisme Pada Dokumen Tugas Akhir,” J. Tek. Inform. dan Sist. Inf., vol. 6, no. 3, Dec. 2020, doi: 10.28932/jutisi.v6i3.2892.

I. Nuritha, A. A. Arifiyanti, and V. P. Widartha, “Analysis of Public Perception on Organic Coffee through Text Mining Approach using Naïve Bayes Classifier,” in 2018 2nd East Indonesia Conference on Computer and Information Technology (EIConCIT), IEEE, Nov. 2018, pp. 153–158. doi: 10.1109/EIConCIT.2018.8878572.

T. Verma, R. Renu, and D. Gaur, “Tokenization and Filtering Process in RapidMiner,” Int. J. Appl. Inf. Syst., vol. 7, no. 2, pp. 16–18, Apr. 2014, doi: 10.5120/ijais14-451139.

J. Kaur, “STOPWORDS REMOVAL AND ITS ALGORITHMS BASED ON DIFFERENT METHODS,” Int. J. Adv. Res. Comput. Sci., vol. 9, no. 5, pp. 81–88, Oct. 2018, doi: 10.26483/ijarcs.v9i5.6301.

K. Kevin, M. Enjeli, and A. Wijaya, “Analisis Sentimen Pengunaaan Aplikasi Kinemaster Menggunakan Metode Naive Bayes,” J. Ilm. Comput. Sci., vol. 2, no. 2, pp. 89–98, Jan. 2024, doi: 10.58602/jics.v2i2.24.

“Applications of Support Vector Machine (SVM) Learning in Cancer Genomics,” Cancer Genomics Proteomics, vol. 15, no. 1, Jan. 2018, doi: 10.21873/cgp.20063.

S. Yue, P. Li, and P. Hao, “SVM classification:Its contents and challenges,” Appl. Math. J. Chinese Univ., vol. 18, no. 3, pp. 332–342, Sep. 2003, doi: 10.1007/s11766-003-0059-5.

K.-X. Han, W. Chien, C.-C. Chiu, and Y.-T. Cheng, “Application of Support Vector Machine (SVM) in the Sentiment Analysis of Twitter DataSet,” Appl. Sci., vol. 10, no. 3, p. 1125, Feb. 2020, doi: 10.3390/app10031125.

H. Jelodar et al., “Latent Dirichlet allocation (LDA) and topic modeling: models, applications, a survey,” Multimed. Tools Appl., vol. 78, no. 11, pp. 15169–15211, Jun. 2019, doi: 10.1007/s11042-018-6894-4.

H. A. Abdulkareem and M. Z. Al-Faiz, “OFFLINE LINEAR DISCRIMINANT ANALYSIS CLASSFICATION OF TWO CLASS EEG SIGNALS,” Iraqi J. Inf. Commun. Technol., vol. 2, no. 3, pp. 1–10, Dec. 2019, doi: 10.31987/ijict.2.3.71.

M. Canesche, L. Braganca, O. P. V. Neto, J. A. Nacif, and R. Ferreira, “Google Colab CAD4U: Hands-On Cloud Laboratories for Digital Design,” in 2021 IEEE International Symposium on Circuits and Systems (ISCAS), IEEE, May 2021, pp. 1–5. doi: 10.1109/ISCAS51556.2021.9401151.

Abstract viewed = 4 times