Sentiment analysis spotify applications on google play store with naïve bayes and neural network methods
Main Article Content
Abstract
Digital advancements have significantly changed the way music is accessed and enjoyed, with streaming platforms such as Spotify emerging as one of the most widely used applications worldwide. Along with this growth, user reviews on platforms like the Google Play Store have become an important source of information, offering insights into user satisfaction and areas for improvement. In this study, sentiment analysis was conducted on Spotify reviews using two classification methods, Naïve Bayes and Neural Networks. The reviews were collected, processed, and then analyzed with both approaches to evaluate their performance. The results show that Neural Networks outperformed in terms of accuracy, F1-score, and recall, while Naïve Bayes performed better in AUC, precision, and MCC. Analysis of the dataset also revealed that negative reviews dominated at 52.8%, followed by positive at 28.3%, and neutral at 19%. These findings highlight the value of sentiment analysis in understanding user perspectives and can support developers in improving application quality and user experience.
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
M. D. Rhajendra and N. Trianasari, “Analisis Sentimen Ulasan Aplikasi Spotify Untuk Peningkatan Layanan Menggunakan Algoritma Naive Bayes,” eProceedings of Management, vol. 8, no. 5, 2021.
M. D. Hendriyanto, A. A. Ridha, and U. Enri, “Analisis Sentimen Ulasan Aplikasi Mola Pada Google Play Store Menggunakan Algoritma Support Vector Machine,” INTECOMS: Journal of Information Technology and Computer Science, vol. 5, no. 1, pp. 1–7, Apr. 2022, doi: 10.31539/intecoms.v5i1.3708.
M. R. F. Ramdhani, “Analisis Sentimen Menggunakan Metode Naive Bayes dan Support Vector Machine Pada Ulasan Aplikasi Spotify,” Universitas Telkom, 2023.
F. Gunawan, M. A. Fauzi, and P. P. Adikara, “Analisis Sentimen Pada Ulasan Aplikasi Mobile Menggunakan Naive Bayes dan Normalisasi Kata Berbasis Levenshtein Distance (Studi Kasus Aplikasi BCA Mobile),” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 1, no. 10 SE-, pp. 1082–1088, Jul. 2017.
M. K. Khoirul Insan, U. Hayati, and O. Nurdiawan, “ANALISIS SENTIMEN APLIKASI BRIMO PADA ULASAN PENGGUNA DI GOOGLE PLAY MENGGUNAKAN ALGORITMA NAIVE BAYES,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 7, no. 1, pp. 478–483, Mar. 2023, doi: 10.36040/jati.v7i1.6373.
Gilbert, Syariful Alam, and M. Imam Sulistyo, “ANALISIS SENTIMEN BERDASARKAN ULASAN PENGGUNA APLIKASI MYPERTAMINA PADA GOOGLE PLAYSTORE MENGGUNAKAN METODE NAÏVE BAYES,” STORAGE: Jurnal Ilmiah Teknik dan Ilmu Komputer, vol. 2, no. 3, pp. 100–108, Aug. 2023, doi: 10.55123/storage.v2i3.2333.
Y. Ramdhani, S. Susanti, M. Farid Adiwisastra, and S. Topiq, “Penerapan Algoritma Neural Network Untuk Klasifikasi Kardiotokografi,” Jurnal Informatika, vol. 5, pp. 43–49, Apr. 2018, doi: 10.31311/ji.v5i1.2832.
V. A. Permadi, “Analisis Sentimen Menggunakan Algoritma Naive Bayes Terhadap Review Restoran di Singapura,” Jurnal Buana Informatika, vol. 11, no. 2, pp. 141–151, Oct. 2020, doi: 10.24002/jbi.v11i2.3769.
Agung Triyono, Ahmad Faqih, and Fathurrohman, “Implementation of the Naive Bayes Method in Sentiment Analysis of Spotify Application Reviews,” Journal of Artificial Intelligence and Engineering Applications (JAIEA), vol. 4, no. 2, pp. 1091–1097, Feb. 2025, doi: 10.59934/jaiea.v4i2.824.
E. D. Madyatmadja, F. Felix, I. G. K. Edrick, J. W. Indarto, and D. J. M. Sembiring, “Harmonizing sentiments: Analyzing user reviews of Spotify through sentiment analysis,” Journal of Infrastructure, Policy and Development, vol. 8, no. 9, p. 7101, Sep. 2024, doi: 10.24294/jipd.v8i9.7101.
S. Fransiska and A. Irham Gufroni, “Sentiment Analysis Provider by.U on Google Play Store Reviews with TF-IDF and Support Vector Machine (SVM) Method,” Scientific Journal of Informatics, vol. 7, no. 2, pp. 2407–7658, 2020.
A. S. Rahayu, A. Fauzi, and R. Rahmat, “Komparasi Algoritma Naïve Bayes Dan Support Vector Machine (SVM) Pada Analisis Sentimen Spotify,” Jurnal Sistem Komputer dan Informatika (JSON), vol. 4, no. 2, p. 349, Dec. 2022, doi: 10.30865/json.v4i2.5398.
B. Gunawan, H. S. Pratiwi, and E. E. Pratama, “Sistem Analisis Sentimen pada Ulasan Produk Menggunakan Metode Naive Bayes,” Jurnal Edukasi dan Penelitian Informatika (JEPIN), vol. 4, no. 2, p. 113, Dec. 2018, doi: 10.26418/jp.v4i2.27526.
F. Irfani, “ANALISIS SENTIMEN REVIEW APLIKASI RUANGGURU MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE,” JBMI (Jurnal Bisnis, Manajemen, dan Informatika), vol. 16, p. 258, Feb. 2020, doi: 10.26487/jbmi.v16i3.8607.
O. I. Gifari, Muh. Adha, F. Freddy, and F. F. S. Durrand, “Analisis Sentimen Review Film Menggunakan TF-IDF dan Support Vector Machine,” Journal of Information Technology, vol. 2, no. 1, pp. 36–40, Mar. 2022, doi: 10.46229/jifotech.v2i1.330.
V. Ibrahim, J. Abu Bakar, N. H. Harun, and A. F. Abdulateef, “A Word Cloud Model based on Hate Speech in an Online Social Media Environment,” Baghdad Science Journal, vol. 18, no. 2, Jun. 2021, doi: 10.21123/bsj.2021.18.2(Suppl.).0937.
B. F. S. Supriyanto and S. Rosalin, “Analisis Sentimen Program Merdeka Belajar dengan Text Analysis Wordcloud & Word Frequency,” Jurnal Minfo Polgan, vol. 12, no. 1, pp. 25–32, Mar. 2023, doi: 10.33395/jmp.v12i1.12312.
R. Ramadhan, Y. A. Sari, and P. P. Adikara, “Perbandingan Pembobotan Term Frequency-Inverse Document Frequency dan Term Frequency-Relevance Frequency terhadap Fitur N-Gram pada Analisis Sentimen,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 5, no. 11 SE-, pp. 5075–5079, Oct. 2021.
A. Hendra and F. Fitriyani, “Analisis Sentimen Review Halodoc Menggunakan Nai ̈ve Bayes Classifier,” JISKA (Jurnal Informatika Sunan Kalijaga), vol. 6, no. 2, pp. 78–89, May 2021, doi: 10.14421/jiska.2021.6.2.78-89.
W. P. Lesmana and Andri Wijaya, “Analisis Sentimen Menggunakan Metode Naive Bayes dan Support Vector Machine pada Ulasan Aplikasi Joox Music,” eProceedings …, vol. 1, no. 2, pp. 110-12-, 2023.
S. Fransiska and A. Irham Gufroni, “Sentiment Analysis Provider by.U on Google Play Store Reviews with TF-IDF and Support Vector Machine (SVM) Method,” Scientific Journal of Informatics, vol. 7, no. 2, pp. 2407–7658, 2020.
T. Y. Pahtoni, H. Jati, U. N. Yogyakarta, and P. Korespondensi, “Analisis Sentimen Data Twitter Terkait Chatgpt Menggunakan Orange Data Mining,” vol. 11, no. 2, pp. 329–336, 2024, doi: 10.25126/jtiik.2024117276.
T. Y. Pahtoni, H. Jati, U. N. Yogyakarta, and P. Korespondensi, “Analisis Sentimen Data Twitter Terkait Chatgpt Menggunakan Orange Data Mining,” vol. 11, no. 2, pp. 329–336, 2024, doi: 10.25126/jtiik.2024117276.
J. J. A. Limbong, I. Sembiring, and K. D. Hartomo, “Analisis Klasifikasi Sentimen Ulasan pada E-Commerce Shopee Berbasis Word Cloud dengan Metode Naive Bayes dan K-Nearest Neighbor,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 9, no. 2, p. 347, 2022, doi: 10.25126/jtiik.2022924960.