Classification of Student Grading Using Naïve Bayes Method with Under-sampling Approach to Handle Imbalance
Main Article Content
Abstract
This study explores the application of the Naive Bayes classification method to predict student grades based on important attributes such as timeliness of assignment submission, attendance rate, and quality of work. This research uses a dataset that includes three attributes, namely timeliness of submission, attendance level in learning, and evaluation of the quality of assignments collected by students. The pre-processing is performed to clean the data, followed by an under-sampling stage to balance the class distribution. Then, the classification model is evaluated and tested using specific data samples to measure prediction accuracy. The results showed a significant improvement in model accuracy after applying under-sampling, highlighting the importance of handling data imbalance in predictive analysis. The implications of these findings are not only relevant in the context of higher education, but also offer opportunities for further development in data-driven decision-making in various fields.
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
C. S. Yusrie, E. Ernawati, D. Suherman, and U. C. Barlian, “Pengembangan Kurikulum dan Proses Pembelajaran Pendidikan Tinggi:,” Reslaj : Religion Education Social Laa Roiba Journal, vol. 3, no. 1, pp. 52–69, Feb. 2021, doi: 10.47467/reslaj.v3i1.276.
R. F. Ramadhan and A. A. Widodo, “Penilaian Mahasiswa Berprestasi Menggunakan Metode Simple Additive Weighting Berbasis Decision Support System,” Jurnal Sistem Informasi dan Informatika (JUSIFOR), vol. 1, no. 2, pp. 90–97, Dec. 2022, doi: 10.33379/jusifor.v1i2.1695.
I. Pero, “Keterampilan Literasi Informasi Mahasiswa Fakultas Kedokteran Umum UNBRAH dalam Proses Pembelajaran,” Shaut Al-Maktabah : Jurnal Perpustakaan, Arsip dan Dokumentasi, vol. 11, no. 2, pp. 170–184, Jan. 2020, doi: 10.37108/shaut.v11i2.249.
N. M. Firdaus and B. Robandi, “EFEKTIVITAS PENGGUNAAN TEKNOLOGI INTERNET DALAM MENCARI PENGETAHUAN DAN KETERAMPILAN BAGI WARGA BELAJAR PKBM,” Comm-Edu (Community Education Journal), vol. 6, no. 1, p. 6, Jan. 2023, doi: 10.22460/comm-edu.v6i1.7527.
A. Septiana, G. Dwilestari, and A. Bahtiar, “PERBANDINGAN METODE KLASIFIKASI DENGAN MENERAPKAN ADABOOST DALAM ANALISIS SENTIMEN PENGGUNA TWITTER X TERHADAP PENERAPAN KURIKULUM MERDEKA,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 1, pp. 323–330, Feb. 2024, doi: 10.36040/jati.v8i1.8453.
R. Muzayanah, A. D. Lestari, B. Prasetiyo, and D. A. A. Pertiwi, “Comparative Study of Imbalanced Data Oversampling Techniques for Peer-to-Peer Landing Loan Prediction,” Scientific Journal of Informatics, vol. 11, no. 1, pp. 245–254, 2024, doi: 10.15294/sji.v11i1.50274.
A. Nurdina and A. B. I. Puspita, “Naive Bayes and KNN for Airline Passenger Satisfaction Classification: Comparative Analysis,” Journal of Information System Exploration and Research, vol. 1, no. 2, pp. 83–92, 2023, doi: 10.52465/joiser.v1i2.167.
R. Pikriyansah, F. R. Umbara, and P. N. Sabrina, “Klasifikasi Daftar Ulang Calon Mahasiswa Baru Dengan Menggunakan Metode Klasifikasi Naive Bayes,” Informatics and Digital Expert (INDEX), vol. 4, no. 2, pp. 70–74, Jan. 2023, doi: 10.36423/index.v4i2.912.
A. U. Kurnia, A. S. Budi, and P. H. Susilo, “SISTEM PENDUKUNG KEPUTUSAN PENERIMAAN BEASISWA MENGGUNAKAN METODE NAIVE BAYES,” Joutica, vol. 5, no. 2, p. 397, Sep. 2020, doi: 10.30736/jti.v5i2.484.
D. Maulina and M. Corry Andhara, “Perbandingan Pre-Processing Opini Netizen Terhadap RUU PKS Menggunakan Algoritma Naive Bayes Classifier,” Smart Comp: Jurnalnya Orang Pintar Komputer, vol. 12, no. 1, Jan. 2023, doi: 10.30591/smartcomp.v12i1.4610.
K. Maharana, S. Mondal, and B. Nemade, “A review: Data pre-processing and data augmentation techniques,” Global Transitions Proceedings, vol. 3, no. 1, pp. 91–99, Jun. 2022, doi: 10.1016/j.gltp.2022.04.020.
Z. Al Faridzi, D. Pramesti, and R. Y. Fa’rifah, “A Comparison of Oversampling and Undersampling Methods in Sentiment Analysis Regarding Indonesia Fuel Price Increase Using Support Vector Machine,” in 2023 International Conference on Advancement in Data Science, E-learning and Information System (ICADEIS), IEEE, Aug. 2023, pp. 1–6. doi: 10.1109/ICADEIS58666.2023.10270851.
C. C. Tusell-Rey, O. Camacho-Nieto, C. Yáñez-Márquez, and Y. Villuendas-Rey, “Customized Instance Random Undersampling to Increase Knowledge Management for Multiclass Imbalanced Data Classification,” Sustainability, vol. 14, no. 21, p. 14398, Nov. 2022, doi: 10.3390/su142114398.
A. S. Almajid, “Multilayer Perceptron Optimization on Imbalanced Data Using SVM-SMOTE and One-Hot Encoding for Credit Card Default Prediction,” Journal of Advances in Information Systems and Technology, vol. 3, no. 2, pp. 67–74, Sep. 2022, doi: 10.15294/jaist.v3i2.57061.
D. D. Lewis, “Naive (Bayes) at forty: The independence assumption in information retrieval,” 1998, pp. 4–15. doi: 10.1007/BFb0026666.
I. Rish, “An empirical study of the naive Bayes classifier,” in IIJCAI 2001 workshop on empirical methods in artificial intelligence, 2001, pp. 41–46.
Y. Junaedi, B. N. Sari, and A. S. Y. Irawan, “Sistem Pakar Untuk Diagnosis Hama Pada Tanaman Jambu Air Menggunakan Metode Theorema Bayes,” Jurnal Ilmiah Informatika, vol. 5, no. 2, pp. 168–178, Dec. 2020, doi: 10.35316/jimi.v5i2.960.