Identifying Coconut Maturity Levels Using CNN and YOLOv8 Deep Learning Algorithms
Main Article Content
Abstract
To improve the efficiency and accuracy of determining coconut maturity levels in the processing industry, this study proposes an automated detection system employing Convolutional Neural Networks (CNN) and the You Only Look Once version 8 (YOLOv8) algorithm to classify maturity levels from image data. This study introduces an automated detection system using Convolutional Neural Networks (CNN) and the You Only Look Once version 8 (YOLOv8) algorithm to identify coconut maturity levels from image data. A dataset of 230 coconut images was utilized, classified into two categories: Young Coconut and Mature Coconut. The YOLOv8 model was trained and evaluated using standard object detection metrics, including mean Average Precision (mAP), precision, recall, and F1-score. The proposed model achieved a mAP of 90.5%, precision of 99.3%, recall of 94.2%, and F1-score of 96.6%, demonstrating high accuracy in detecting coconut maturity. This approach offers a practical and efficient alternative to manual assessment, contributing to improved accuracy and operational efficiency in agricultural practices.
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
D. Uztürk and G. Büyüközkan, “Industry 4.0 technologies in Smart Agriculture: A review and a Technology Assessment Model proposition,” Technol Forecast Soc Change, vol. 208, Nov. 2024, doi: 10.1016/j.techfore.2024.123640.
F. Costa, S. Frecassetti, M. Rossini, and A. Portioli-Staudacher, “Industry 4.0 digital technologies enhancing sustainability: Applications and barriers from the agricultural industry in an emerging economy,” J Clean Prod, vol. 408, Jul. 2023, doi: 10.1016/j.jclepro.2023.137208.
A. Ateneo, F. M. Dayrit, and Q. Nguyen, “Improving the Value of the Coconut with Biotechnology Improving the Value of the Coconut with Biotechnology Part of the Organic Chemistry Commons, and the Other Chemistry Commons.” [Online]. Available: https://archium.ateneo.edu/chemistry-faculty-pubs
S. Bhoj, A. Manoj, and S. Bhaskar, “Usage potential and benefits of processed coconut shells in concrete as coarse aggregates,” Mater Today Proc, 2023, doi: 10.1016/j.matpr.2023.03.529.
F. Camargo Prado, J. De Dea Lindner, J. Inaba, V. Thomaz-Soccol, S. Kaur Brar, and C. R. Soccol, “Development and evaluation of a fermented coconut water beverage with potential health benefits,” J Funct Foods, vol. 12, pp. 489–497, Jan. 2015, doi: 10.1016/j.jff.2014.12.020.
R. P. M. Aba, M. B. Z. Luna, J. C. Villasis, and A. A. A. Ching, “Characterization of mature coconut (Cocos nucifera L.) water from different varieties,” Food and Humanity, vol. 2, p. 100248, May 2024, doi: 10.1016/j.foohum.2024.100248.
W. H. Coulibaly et al., “Nutritional profile and functional properties of coconut water marketed in the streets of Abidjan (Côte d’Ivoire),” Sci Afr, vol. 20, Jul. 2023, doi: 10.1016/j.sciaf.2023.e01616.
R. K. Mandava, H. Mittal, and N. Hemalatha, “Identifying the maturity level of coconuts using deep learning algorithms,” Mater Today Proc, Sep. 2023, doi: 10.1016/j.matpr.2023.09.071.
I. Kutyauripo, M. Rushambwa, and L. Chiwazi, “Artificial intelligence applications in the agrifood sectors,” J Agric Food Res, vol. 11, Mar. 2023, doi: 10.1016/j.jafr.2023.100502.
F. Maffezzoli, M. Ardolino, A. Bacchetti, M. Perona, and F. Renga, “Agriculture 4.0: A systematic literature review on the paradigm, technologies and benefits,” Futures, vol. 142, Sep. 2022, doi: 10.1016/j.futures.2022.102998.
A. Alamsyah, B. Prasetiyo, M. F. Al Hakim, and F. D. Pradana, “Prediction of COVID-19 Using Recurrent Neural Network Model,” Scientific Journal of Informatics, vol. 8, no. 1, pp. 98–103, May 2021, doi: 10.15294/sji.v8i1.30070.
M. R. H. Polas, A. Afshar Jahanshahi, A. I. Kabir, A. S. M. Sohel-Uz-Zaman, A. R. Osman, and R. Karim, “Artificial Intelligence, Blockchain Technology, and Risk-Taking Behavior in the 4.0IR Metaverse Era: Evidence from Bangladesh-Based SMEs,” Journal of Open Innovation: Technology, Market, and Complexity, vol. 8, no. 3, Sep. 2022, doi: 10.3390/joitmc8030168.
V. Sachithra and L. D. C. S. Subhashini, “How artificial intelligence uses to achieve the agriculture sustainability: Systematic review,” Artificial Intelligence in Agriculture, vol. 8, pp. 46–59, Jun. 2023, doi: 10.1016/j.aiia.2023.04.002.
A. Alamsyah and D. A. Anggraeni, “Detection of Indonesian Sign Language System using Convolutional Neural Network (CNN) with Nadam Optimizer,” 2024, pp. 352–359. doi: 10.2991/978-94-6463-589-8_32.
A. Alamsyah and A. Izzulhaq, “Implementation of the Convolutional Neural Network Algorithm Using the ResNet50V2 Architecture for Pneumonia Detection,” 2024. [Online]. Available: https://journal.unnes.ac.id/journals/JM/index
J. Chen et al., “Detecting ripe fruits under natural occlusion and illumination conditions,” Comput Electron Agric, vol. 190, Nov. 2021, doi: 10.1016/j.compag.2021.106450.
Y. Zhang, “YOLO Series Target Detection Technology and Application,” 2023.
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified, Real-Time Object Detection,” 2016. [Online]. Available: http://pjreddie.com/yolo/
R. Sapkota, D. Ahmed, and M. Karkee, “Comparing YOLOv8 and Mask R-CNN for instance segmentation in complex orchard environments,” Artificial Intelligence in Agriculture, vol. 13, pp. 84–99, Sep. 2024, doi: 10.1016/j.aiia.2024.07.001.
M. Sohan, T. Sai Ram, and Ch. V. Rami Reddy, “A Review on YOLOv8 and Its Advancements,” 2024, pp. 529–545. doi: 10.1007/978-981-99-7962-2_39.
J. A. Caladcad et al., “Determining Philippine coconut maturity level using machine learning algorithms based on acoustic signal,” Comput Electron Agric, vol. 172, May 2020, doi: 10.1016/j.compag.2020.105327.
S. Parvathi and S. Tamil Selvi, “Detection of maturity stages of coconuts in complex background using Faster R-CNN model,” Biosyst Eng, vol. 202, pp. 119–132, Feb. 2021, doi: 10.1016/j.biosystemseng.2020.12.002.
G. Lin, J. Z. Jiang, J. Bai, Y. W. Su, Z. H. Su, and H. S. Liu, “Frontiers and developments of data augmentation for image: From unlearnable to learnable,” Feb. 01, 2025, Elsevier B.V. doi: 10.1016/j.inffus.2024.102660.
E. Casas, L. Ramos, C. Romero, and F. Rivas-Echeverría, “A comparative study of YOLOv5 and YOLOv8 for corrosion segmentation tasks in metal surfaces,” Array, vol. 22, Jul. 2024, doi: 10.1016/j.array.2024.100351.
H. Lou et al., “DC-YOLOv8: Small-Size Object Detection Algorithm Based on Camera Sensor,” Electronics (Switzerland), vol. 12, no. 10, May 2023, doi: 10.3390/electronics12102323.