Techniques of Applied Machine Learning Being Utilized for the Purpose of Selecting and Placing Human Resources within the Public Sector

Main Article Content

Panagiota Pampouktsi
Spyridon Avdimiotis
Manolis Maragoudakis
Markos Avlonitis
Nikita Samantha
Praveen Hoogar
George Mugambage Ruhago
Wcyliffe Rono

Abstract

In strategic human resource management, one of the most critical issues to focus on is the correct selection and placement of people. Within the confines of this framework, the reason for the study that was conducted was to explore the machine learning approaches that proved to be the most effective in assisting with the recruitment of personnel and the assessment of their positions. To accomplish this goal, a in a series of tests involving workers in the public sector, categorization algorithms were used. The purpose of these tests was to determine which employees would be the ideal fit in which workstations and to determine how workers should be distributed. For supporting the decision support system, an algorithm model was created. Used in the process of recruiting and evaluating potential workers based on the results of the tests that were given. The most important results of this study support the idea that using the People's Evaluation for Recruitment and Promotion Algorithm Model (EERPAM) would make hiring and promoting people in a company fairer.

Article Details

How to Cite
Pampouktsi, P., Avdimiotis, S., Maragoudakis, M. ., Avlonitis, M. ., Samantha, N. ., Hoogar, . P. ., Ruhago, G. M. ., & Rono, W. (2022). Techniques of Applied Machine Learning Being Utilized for the Purpose of Selecting and Placing Human Resources within the Public Sector. Journal of Information System Exploration and Research, 1(1), 1 - 16. https://doi.org/10.52465/joiser.v1i1.91
Section
Articles
Author Biography

Praveen Hoogar, University of Karnatak Dharwad, India

Head of department

References

B. E. Becker and M. A. Huselid, “Strategic human resources management: Where do we go from here?,” J. Manage., vol. 32, no. 6, pp. 898–925, 2006, doi: 10.1177/0149206306293668. https://doi.org/10.1177/0149206306293668

P. Pampouktsi, S. Avdimiotis, M. Μaragoudakis, and M. Avlonitis, “Applied Machine Learning Techniques on Selection and Positioning of Human Resources in the Public Sector,” Open J. Bus. Manag., vol. 09, no. 02, pp. 536–556, 2021, doi: 10.4236/ojbm.2021.92030. https://doi.org/10.4236/ojbm.2021.92030

E. Memili, H. “Chevy” Fang, B. Koc, Ö. Yildirim-Öktem, and S. Sonmez, “Sustainability practices of family firms: The interplay between family ownership and long-term orientation,” J. Sustain. Tour., vol. 26, no. 1, pp. 9–28, 2018, doi: 10.1080/09669582.2017.1308371. https://doi.org/10.1080/09669582.2017.1308371

J. Collins, “Good to Great - (Why Some Companies Make the Leap and others Don’t),” NHRD Netw. J., vol. 2, no. 7, pp. 102–105, 2009, doi: 10.1177/0974173920090719. https://doi.org/10.1177/0974173920090719

S. R. M. Zeebaree, H. M. Shukur, and B. K. Hussan, “Human resource management systems for enterprise organizations: A review,” Period. Eng. Nat. Sci., vol. 7, no. 2, pp. 660–669, 2019, doi: 10.21533/pen.v7i2.428. https://doi.org/10.21533/pen.v7i2.428

A. Kaplan and M. Haenlein, “Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence,” Bus. Horiz., vol. 62, no. 1, pp. 15–25, 2019, doi: 10.1016/j.bushor.2018.08.004. https://doi.org/10.1016/j.bushor.2018.08.004

Vegard Kolbjørnsrud, Richard Amico, and Robert J. Thomas, “How Artificial Intelligence Will Redefine Management,” Harv. Bus. Rev., pp. 2–7, 2016.

G. Carleo et al., “Machine learning and the physical sciences,” Rev. Mod. Phys., vol. 91, no. 4, p. 45002, Dec. 2019, doi: 10.1103/RevModPhys.91.045002. https://doi.org/10.1103/RevModPhys.91.045002

M. J. García de Yébenes Prous, F. Rodríguez Salvanés, and L. Carmona Ortells, “Validation of questionnaires,” Reumatol. Clin., vol. 5, no. 4, pp. 171–177, 2009, doi: 10.1016/j.reuma.2008.09.007. https://doi.org/10.1016/j.reuma.2008.09.007

S. Sovey, K. Osman, and M. E. E. MohdMatore, “Exploratory and Confirmatory Factor Analysis for Disposition Levels of Computational Thinking Instrument Among Secondary School Students,” Eur. J. Educ. Res., vol. 10, no. 3, pp. 1075–1088, 2022, doi: 10.12973/eu-jer.11.2.639. https://doi.org/10.12973/eu-jer.11.2.639

Y. S. Abu Sultan, M. J. Al Shobaki, S. S. Abu Naser, and S. A. El Talla, “The Style of Leadership and Its Role in Determining the Pattern of,” Int. J. Acad. Manag. Sci. Res., vol. 2, no. 6, pp. 26–42, 2018.

F. Fallucchi, M. Coladangelo, R. Giuliano, and E. W. De Luca, “Predicting employee attrition using machine learning techniques,” Computers, vol. 9, no. 4, pp. 1–17, 2020, doi: 10.3390/computers9040086. https://doi.org/10.3390/computers9040086

M. De-Arteaga, R. Fogliato, and A. Chouldechova, “A Case for Humans-in-the-Loop: Decisions in the Presence of Erroneous Algorithmic Scores,” in Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, 2020, pp. 1–12, doi: 10.1145/3313831.3376638. https://doi.org/10.1145/3313831.3376638

R. Hou and Y. Xia, “Review on the new development of vibration-based damage identification for civil engineering structures: 2010–2019,” J. Sound Vib., vol. 491, p. 115741, 2021, doi: 10.1016/j.jsv.2020.115741. https://doi.org/10.1016/j.jsv.2020.115741

J. R. Quinlan, “Bagging, boosting, and C4.5,” Proc. Natl. Conf. Artif. Intell., vol. 1, no. Quinlan 1993, pp. 725–730, 1996.

A. Joshuva, R. S. Kumar, S. Sivakumar, G. Deenadayalan, and R. Vishnuvardhan, “An insight on VMD for diagnosing wind turbine blade faults using C4.5 as feature selection and discriminating through multilayer perceptron,” Alexandria Eng. J., vol. 59, no. 5, pp. 3863–3879, 2020, doi: 10.1016/j.aej.2020.06.041. https://doi.org/10.1016/j.aej.2020.06.041

L. J. Rong, “Distance learning quality assessment of universities based on interval monotonic decision tree algorithm,” Comput. Electr. Eng., vol. 102, p. 108116, 2022, doi: 10.1016/j.compeleceng.2022.108116. https://doi.org/10.1016/j.compeleceng.2022.108116

P. Xu et al., “Contact Sequence Planning for Hexapod Robots in Sparse Foothold Environment Based on Monte-Carlo Tree,” IEEE Robot. Autom. Lett., vol. 7, no. 2, pp. 826–833, 2022, doi: 10.1109/LRA.2021.3133610. https://doi.org/10.1109/LRA.2021.3133610

I. H. Witten and E. Frank, “Data mining: practical machine learning tools and techniques with Java implementations,” Acm Sigmod Rec., vol. 31, no. 1, pp. 76–77, 2011, doi: 10.1145/507338.507355. https://doi.org/10.1145/507338.507355

N. Kappelhof et al., “Evolutionary algorithms and decision trees for predicting poor outcome after endovascular treatment for acute ischemic stroke,” Comput. Biol. Med., vol. 133, p. 104414, 2021, doi: 10.1016/j.compbiomed.2021.104414. https://doi.org/10.1016/j.compbiomed.2021.104414

L. Vanfretti and V. S. N. Arava, “Decision tree-based classification of multiple operating conditions for power system voltage stability assessment,” Int. J. Electr. Power Energy Syst., vol. 123, p. 106251, 2020, doi: 10.1016/j.ijepes.2020.106251. https://doi.org/10.1016/j.ijepes.2020.106251

Q. Guo et al., “Urban Tree Classification Based on Object-Oriented Approach and Random Forest Algorithm Using Unmanned Aerial Vehicle (UAV) Multispectral Imagery,” Remote Sens., vol. 14, no. 16, 2022, doi: 10.3390/rs14163885. https://doi.org/10.3390/rs14163885

N. Octaviani Faomasi Daeli, “Sentiment Analysis on Movie Reviews Using Information Gain and K-Nearest Neighbor,” Open Access J Data Sci Appl, vol. 3, no. 1, pp. 1–007, 2020, doi: 10.34818/JDSA.2020.3.22. https://doi.org/10.34818/JDSA.2020.3.22

S. Ruan, H. Li, C. Li, and K. Song, “Class-Specific Deep Feature Weighting for Naïve Bayes Text Classifiers,” IEEE Access, vol. 8, pp. 20151–20159, 2020, doi: 10.1109/ACCESS.2020.2968984. https://doi.org/10.1109/ACCESS.2020.2968984

N. Arora and P. D. Kaur, “A Bolasso based consistent feature selection enabled random forest classification algorithm: An application to credit risk assessment,” Appl. Soft Comput., vol. 86, p. 105936, 2020, doi: 10.1016/j.asoc.2019.105936. https://doi.org/10.1016/j.asoc.2019.105936

Z. Haiyun and X. Yizhe, “Sports performance prediction model based on integrated learning algorithm and cloud computing Hadoop platform,” Microprocess. Microsyst., vol. 79, p. 103322, 2020, doi: 10.1016/j.micpro.2020.103322. https://doi.org/10.1016/j.micpro.2020.103322

N. Shrestha, “Factor Analysis as a Tool for Survey Analysis,” Am. J. Appl. Math. Stat., vol. 9, no. 1, pp. 4–11, 2021, doi: 10.12691/ajams-9-1-2. https://doi.org/10.12691/ajams-9-1-2

M. Sornalakshmi et al., “Hybrid method for mining rules based on enhanced Apriori algorithm with sequential minimal optimization in healthcare industry,” Neural Comput. Appl., vol. 34, no. 13, pp. 10597–10610, 2022, doi: 10.1007/s00521-020-04862-2. https://doi.org/10.1007/s00521-020-04862-2

K. P. Lagaza, A. K. Kashyap, and A. Pandey, “Spider Monkey Optimization Algorithm Based Collision-Free Navigation and Path Optimization for a Mobile Robot in the Static Environment,” in Advances in Mechanical Engineering, 2020, pp. 1459–1473. https://doi.org/10.1007/978-981-15-0124-1_128

S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy, “Improvements to Platt’s SMO algorithm for SVM classifier design,” Neural Comput., vol. 13, no. 3, pp. 637–649, 2001, doi: 10.1162/089976601300014493. https://doi.org/10.1162/089976601300014493

Z. Pan, Z. Meng, Z. Chen, W. Gao, and Y. Shi, “A two-stage method based on extreme learning machine for predicting the remaining useful life of rolling-element bearings,” Mech. Syst. Signal Process., vol. 144, p. 106899, 2020, doi: 10.1016/j.ymssp.2020.106899. https://doi.org/10.1016/j.ymssp.2020.106899

K. Gorman and S. Bedrick, “We Need to Talk about Standard Splits,” in Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Jul. 2019, pp. 2786–2791, doi: 10.18653/v1/P19-1267. https://doi.org/10.18653/v1/P19-1267

P. B. Keenan and P. Jankowski, “Spatial Decision Support Systems: Three decades on,” Decis. Support Syst., vol. 116, pp. 64–76, 2019, doi: 10.1016/j.dss.2018.10.010. https://doi.org/10.1016/j.dss.2018.10.010

G. Li, F. Li, C. Xu, and X. Fang, “A spatial-temporal layer-wise relevance propagation method for improving interpretability and prediction accuracy of LSTM building energy prediction,” Energy Build., vol. 271, p. 112317, 2022, doi: 10.1016/j.enbuild.2022.112317. https://doi.org/10.1016/j.enbuild.2022.112317

Y. Xu and R. Goodacre, “On Splitting Training and Validation Set: A Comparative Study of Cross-Validation, Bootstrap and Systematic Sampling for Estimating the Generalization Performance of Supervised Learning,” J. Anal. Test., vol. 2, no. 3, pp. 249–262, 2018, doi: 10.1007/s41664-018-0068-2. https://doi.org/10.1007/s41664-018-0068-2

M. Roccetti, G. Delnevo, L. Casini, and S. Mirri, “An alternative approach to dimension reduction for pareto distributed data: a case study,” J. Big Data, vol. 8, no. 1, p. 39, 2021, doi: 10.1186/s40537-021-00428-8. https://doi.org/10.1186/s40537-021-00428-8

Y. Nieto, V. Gacía-Díaz, C. Montenegro, C. C. González, and R. González Crespo, “Usage of Machine Learning for Strategic Decision Making at Higher Educational Institutions,” IEEE Access, vol. 7, pp. 75007–75017, 2019, doi: 10.1109/ACCESS.2019.2919343. https://doi.org/10.1109/ACCESS.2019.2919343

L. Xiaoxue, B. Xuesong, W. Longhe, R. Bingyuan, L. Shuhan, and L. Lin, “Review and Trend Analysis of Knowledge Graphs for Crop Pest and Diseases,” IEEE Access, vol. 7, pp. 62251–62264, 2019, doi: 10.1109/ACCESS.2019.2915987. https://doi.org/10.1109/ACCESS.2019.2915987

N. Bindra and M. Sood, “Detecting DDoS Attacks Using Machine Learning Techniques and Contemporary Intrusion Detection Dataset,” Autom. Control Comput. Sci., vol. 53, no. 5, pp. 419–428, 2019, doi: 10.3103/S0146411619050043.

M. Chatterjee and A. S. Namin, “A fuzzy Dempster–Shafer classifier for detecting Web spams,” J. Inf. Secur. Appl., vol. 59, p. 102793, 2021, doi: 10.1016/j.jisa.2021.102793. https://doi.org/10.1016/j.jisa.2021.102793

H. Faris, M. Habib, M. Faris, M. Alomari, and A. Alomari, “Medical speciality classification system based on binary particle swarms and ensemble of one vs. rest support vector machines,” J. Biomed. Inform., vol. 109, p. 103525, 2020, doi: 10.1016/j.jbi.2020.103525. https://doi.org/10.1016/j.jbi.2020.103525

B. E. Boser, V. N. Vapnik, and I. M. Guyon, “Training Algorithm Margin for Optimal Classifiers,” Perception, pp. 144–152, 1992. https://doi.org/10.1145/130385.130401

Y. Zhang, B. Yu, and H. M. Gu, “Face recognition using curvelet-based two-dimensional principle component analysis,” Int. J. Pattern Recognit. Artif. Intell., vol. 26, no. 3, pp. 1–13, 2012, doi: 10.1142/S0218001412560095. https://doi.org/10.1142/S0218001412560095

T. L. Nikmah, M. Z. Ammar, Y. R. Allatif, R. M. P. Husna, P. A. Kurniasari, and A. S. Bahri, “Comparison of LSTM , SVM , and Naive Bayes for Classifying Sexual Harassment Tweets,” J. Soft Comput. Explor., vol. 3dend, no. 2, pp. 131–137, 2022. https://doi.org/10.52465/joscex.v3i2.85

K. Tan, W. S. Lee, H. Gan, and S. Wang, “Recognising blueberry fruit of different maturity using histogram oriented gradients and colour features in outdoor scenes,” Biosyst. Eng., vol. 176, pp. 59–72, 2018, doi: 10.1016/j.biosystemseng.2018.08.011. https://doi.org/10.1016/j.biosystemseng.2018.08.011

J. S. Mapa, A. Sison, and R. P. Medina, “A Modified C4.5 Classification Algorithm: With the Discretization Method in Calculating the Goodness Score Equivalent,” ICETAS 2019 - 2019 6th IEEE Int. Conf. Eng. Technol. Appl. Sci., pp. 4–7, 2019, doi: 10.1109/ICETAS48360.2019.9117309. https://doi.org/10.1109/ICETAS48360.2019.9117309

C. F. Chien and L. F. Chen, “Data mining to improve personnel selection and enhance human capital: A case study in high-technology industry,” Expert Syst. Appl., vol. 34, no. 1, pp. 280–290, 2008, doi: 10.1016/j.eswa.2006.09.003. https://doi.org/10.1016/j.eswa.2006.09.003

B. Prasetiyo, Alamsyah, and M. A. Muslim, “Analysis of Building Energy Efficiency Dataset Using Naive Bayes Classification Classifier,” J. Phys. Conf. Ser., vol. 1321, no. 3, p. 32016, Oct. 2019. https://doi.org/10.1088/1742-6596/1321/3/032016

A. Azar, M. V. Sebt, P. Ahmadi, and A. Rajaeian, “A model for personnel selection with a data mining approach: A case study in a commercial bank,” SA J. Hum. Resour. Manag., vol. 11, no. 1, pp. 1–10, 2013, doi: 10.4102/sajhrm.v11i1.449. https://doi.org/10.4102/sajhrm.v11i1.449

S.-O. Gerdt, E. Wagner, and G. Schewe, “The relationship between sustainability and customer satisfaction in hospitality: An explorative investigation using eWOM as a data source,” Tour. Manag., vol. 74, pp. 155–172, 2019, doi: 10.1016/j.tourman.2019.02.010. https://doi.org/10.1016/j.tourman.2019.02.010

K. R. Varshney, V. Chenthamarakshan, S. W. Fancher, J. Wang, D. Fang, and A. Mojsilović, “Predicting employee expertise for talent management in the enterprise,” Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., pp. 1729–1738, 2014, doi: 10.1145/2623330.2623337. https://doi.org/10.1145/2623330.2623337

Abstract viewed = 936 times