IoT-Integrated Smart Attendance and Attention Monitoring System For Primary and Secondary School Classroom Management
Main Article Content
Abstract
The monitoring of student attendance is a crucial aspect of the assessment of academic performance. The conventional methods for monitoring student attendance have inherent limitations in terms of both time efficiency and accuracy. Consequently, there is a clear need for a more expedient and precise attendance system. The objective of this research is to present the design of a real-time attendance recording and monitoring system for students from elementary school to senior high school, which will be implemented using the concept of the Internet of Things (IoT). The proposed system employs biometric technology in the form of face recognition. The methodology commences with the capture of images of students who leave the classroom during the instructional period via an active camera positioned on the classroom door. The system employs a Convolutional Neural Network (CNN) algorithm and a powerful computer vision tool, OpenCV, to perform real-time face recognition. Teachers will be informed of student absences and returns, as well as at the 15th and 30th minutes. An absence exceeding 30 minutes is classified as truancy. The integration of sophisticated technologies, such as machine learning and image processing, not only enhances the precision of attendance records but also equips educators with an efficient and automated system for streamlining classroom attendance management. This not only optimizes the learning environment but also facilitates more advanced and efficient pedagogical practices.
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
A. Budiman, Fabian, R. A. Yaputera, S. Achmad, and A. Kurniawan, “Student attendance with face recognition (LBPH or CNN): Systematic literature review,” Procedia Comput. Sci., vol. 216, pp. 31–38, 2023, doi: 10.1016/j.procs.2022.12.108.
D. E. Setiawan and A. Mais, “Pengaruh Tingkat Kehadiran Siswa Terhadap Efektivitas Proses Pembelajaran Siswa Kelas IV Tuna Grahita Ringan Dalam Kelas Regular SD Inklusi di Kabupaten Jember,” SPEED J. J. Spec. Educ., vol. 1, no. 1, pp. 28–33, 2018.
T. Kurnialensya and P. C. Saputra, “Absensi Sistem Monitoring Kehadiran Siswa Menggunakan Mikrokontroller Berbasis Web,” Rabit J. Teknol. dan Sist. Inf. Univrab, vol. 8, no. 1, pp. 92–99, Jan. 2023, doi: 10.36341/rabit.v8i1.3039.
M. Z. Khan, S. Harous, S. U. Hassan, M. U. Ghani Khan, R. Iqbal, and S. Mumtaz, “Deep Unified Model For Face Recognition Based on Convolution Neural Network and Edge Computing,” IEEE Access, vol. 7, pp. 72622–72633, 2019, doi: 10.1109/ACCESS.2019.2918275.
F. Qayyum, H. Jamil, F. Jamil, S. Ahmad, and D.-H. Kim, “IoT-Orchestration based nanogrid energy management system and optimal time-aware scheduling for efficient energy usage in nanogrid,” Int. J. Electr. Power Energy Syst., vol. 142, p. 108292, Nov. 2022, doi: 10.1016/j.ijepes.2022.108292.
R. A. S. Naseri, A. Kurnaz, and H. M. Farhan, “Optimized face detector-based intelligent face mask detection model in IoT using deep learning approach,” Appl. Soft Comput., vol. 134, p. 109933, Feb. 2023, doi: 10.1016/j.asoc.2022.109933.
B.-T. Nguyen-Tat, M.-Q. Bui, and V. M. Ngo, “Automating attendance management in human resources: A design science approach using computer vision and facial recognition,” Int. J. Inf. Manag. Data Insights, vol. 4, no. 2, p. 100253, Nov. 2024, doi: 10.1016/j.jjimei.2024.100253.
F. B. J, R. R, S. M, and G. M. N R, “IoT based Cloud Integrated Smart Classroom for smart and a sustainable Campus,” Procedia Comput. Sci., vol. 172, pp. 77–81, 2020, doi: 10.1016/j.procs.2020.05.012.
H. Kusuma Wardana, A. N. Rumaksari, and H. C. Meganathan, “Perancangan Sistem Pencatat Kehadiran Jemaat berbasis IoT Untuk Meningkatkan Pembinaan Jemaat di GKJ Harjosari Karanganyar,” J. Pengabdi. Kpd. Masy. Nusant., vol. 5, no. 1, pp. 688–693, Feb. 2024, doi: 10.55338/jpkmn.v5i1.2772.
B. R. P. Utami, I. W. A. Arimbawa, and F. Bimantoro, “Sistem Presensi Siswa berbasis Internet of Things menggunakan Sensor Sidik Jari pada SMK Perhotelan 45 Mataram,” J. Teknol. Informasi, Komputer, dan Apl. (JTIKA ), vol. 1, no. 2, Sep. 2019, doi: 10.29303/jtika.v1i2.59.
R. Alqudah, A. Arafat, M. Shawish, and H. A. Shehadeh, “Biometric-based smart attendance management system using face recognition and authentication,” in AIP Conference Proceedings, 2023, p. 020004. doi: 10.1063/5.0174784.
D. Saraswat, P. Bhattacharya, T. Shah, R. Satani, and S. Tanwar, “Anti-spoofing-enabled Contactless Attendance Monitoring System in the COVID-19 Pandemic,” Procedia Comput. Sci., vol. 218, pp. 1506–1515, 2023, doi: 10.1016/j.procs.2023.01.129.
Z. Zhu, J. Huang, and J. Lu, “Webface260M: A benchmark for million-scale deep face recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 2, pp. 2627–2644, 2023.
K. Vignesh, A. M. Abirami, P. Manideep, K. Vasu, K. Rakesh, and S. V. Vardhan, “Smart Attendance System using Deep Learning,” in 2023 7th International Conference on Trends in Electronics and Informatics (ICOEI), Apr. 2023, pp. 1081–1087. doi: 10.1109/ICOEI56765.2023.10126022.
K. Alhanaee, M. Alhammadi, N. Almenhali, and M. Shatnawi, “Face Recognition Smart Attendance System using Deep Transfer Learning,” Procedia Comput. Sci., vol. 192, pp. 4093–4102, 2021, doi: 10.1016/j.procs.2021.09.184.
N. A. Ismail et al., “Web-based University Classroom Attendance System Based on Deep Learning Face Recognition,” KSII Trans. Internet Inf. Syst., vol. 16, no. 2, pp. 503–523, Feb. 2022, doi: 10.3837/tiis.2022.02.008.
“OpenCV Library.” https://opencv.org/ (accessed Feb. 14, 2023).
R. Nidhya, D. J. A. Pabi, U. DivyaSree, B. Abhishek, A. Harika, and S. A. Alim, “Exploring Facial Recognition Technologies for Classroom Management,” in 2024 10th International Conference on Communication and Signal Processing (ICCSP), Apr. 2024, pp. 1702–1707. doi: 10.1109/ICCSP60870.2024.10544143.
R. Szeliski, Computer Vision. London: Springer London, 2011. doi: 10.1007/978-1-84882-935-0.