Implementation of a faster R-CNN algorithm for identification of metastatic tissue using lymphoma histopathological images

Main Article Content

Puja Aditya Winata
Isnaini Roysida

Abstract

Procedures for diagnosis of lymphoma includes blood tests, CT scan or MRI, and histopathological examination through a biopsy. Histopathological examination is the gold standard of diagnosis. Pathology diagnosis of lymphoma is challenging and difficult in the field of diagnostic pathology. This study aims to identify lymph node metastases using the Faster R-CNN algorithm using histopathological images of lymph nodes so that the Faster RCNN system design can help the medical team to make diagnostic decisions. Identification carried out by Faster R-CNN is by classifying histopathological images into normal classes and metastatic classes. Loss values that are not indicated for underfitting and overfitting are shown from the 10th epoch to the 20th epoch. The optimizer and the number of epochs for the optimal value of 83.3% accuracy and 71.8% recall are ADAM with 20 epochs. The accuracy and recall results obtained are quite good. 1113 metastatic images and 1478 normal images were predicted correctly, while 437 metastatic images and 82 normal images were predicted incorrectly.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
P. A. Winata and I. Roysida, “Implementation of a faster R-CNN algorithm for identification of metastatic tissue using lymphoma histopathological images”, J. Soft Comput. Explor., vol. 4, no. 2, May 2023.
Section
Articles

References

A. Panesar, Machine Learning and AI for Healthcare. 2021.

L. Mueller, J. P.; Massaron, Machine learning for dummies, vol. 53, no. 9. New Jersey: John Wiley & Sons, 2013.

S. S. Dash, S. K. Nayak, and D. Mishra, “A review on machine learning algorithms,” Smart Innov. Syst. Technol., vol. 153, no. October, pp. 495–507, 2021.

U. Arshad, “Object Detection in Last Decade - A Survey,” Sci. J. Informatics, vol. 8, no. 1, pp. 60–70, May 2021.

B. G. Weinstein, “A computer vision for animal ecology,” J. Anim. Ecol., vol. 87, no. 3, pp. 533–545, 2018.

J. Jumanto, F. W. Nugraha, A. Harjoko, M. A. Muslim, and N. A. Noralhuda, “Mix histogram and gray level co-occurrence matrix to improve glaucoma prediction machine learning,” J. Soft Comput. Explor., vol. 4, no. 1, pp. 13–22, Dec. 2023.

J.-E. Dong, J. Li, H. Liu, and Y. Zhong Wang, “A new effective method for identifying boletes species based on FT-MIR and three dimensional correlation spectroscopy projected image processing,” Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 296, p. 122653, Aug. 2023.

A. Chaurasia, A. Gautam, R. Rajkumar, and A. S. Chander, “Road traffic optimization using image processing and clustering algorithms,” Adv. Eng. Softw., vol. 181, p. 103460, Jul. 2023.

S. Dabeer, M. M. Khan, and S. Islam, “Cancer diagnosis in histopathological image: CNN based approach,” Informatics Med. Unlocked, vol. 16, no. August, p. 100231, 2019.

G. Rohith, “R-CNN, Fast R-CNN, Faster R-CNN, YOLO — Object Detection Algorithms,” towardsdatascience.com, 2018. .

R. Ezhilarasi and P. Varalakshmi, “Tumor detection in the brain using faster R-CNN,” Proc. Int. Conf. I-SMAC (IoT Soc. Mobile, Anal. Cloud), I-SMAC 2018, pp. 388–392, 2019.

M. Subhan and H. Basri, “Klasifikasi Mutu Buah Pala (Myristica Fragrans Houtt) Berbasis Pengolahan Citra Menggunakan Metode Deep Learning Arsitektur Faster R-CNN,” INTEK J. Penelit., vol. 6, no. 2, p. 106, 2019.

Y. Rizki, R. Medikawati Taufiq, H. Mukhtar, and D. Putri, “Klasifikasi Pola Kain Tenun Melayu Menggunakan Faster R-CNN,” IT J. Res. Dev., vol. 5, no. 2, pp. 215–225, 2021.

J. Eska, H. Hidayatullah, and H. Hambali, “Sistem Pakar Metode Certainty Factor Dalam Diagnosa Penyakit Kanker Kelenjar Getah Bening Pada Rsud H. Abdul Manan Simatupang,” J. Sci. Soc. Res., vol. 4, no. 2, p. 155, 2021.

R. A. Monavia, “Ini Jenis Kanker yang Paling Banyak Diderita Penduduk Indonesia,” katadata.co.id, 2021. .

Y. Lu et al., “Identification of metastatic lymph nodes in MR imaging with faster region-based convolutional neural networks,” Cancer Res., vol. 78, no. 17, pp. 5135–5143, 2018.

S. A. Taqi, S. A. Sami, L. B. Sami, and S. A. Zaki, “A review of artifacts in histopathology,” J. oral Maxillofac. Pathol. JOMFP, vol. 22, no. 2, p. 279, 2018.

X. Li, “Pitfalls in the pathological diagnosis of lymphoma,” Chinese Clin. Oncol., vol. 4, no. 1, pp. 1–7, 2015.

B. S. Veeling, J. Linmans, J. Winkens, T. Cohen, and M. Welling, “Rotation equivariant CNNs for digital pathology,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 11071 LNCS, pp. 210–218, 2018.

B. E. Bejnordi et al., “Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer,” JAMA - J. Am. Med. Assoc., vol. 318, no. 22, pp. 2199–2210, 2017.

S. Sutikno, H. A. Wibawa, and R. Saputra, “Automatic Detection of Motorcycle on the Road using Digital Image Processing,” Sci. J. Informatics, vol. 6, no. 2, pp. 203–212, Dec. 2018.

F. Charli, H. Syaputra, M. Akbar, S. Sauda, and F. Panjaitan, “Implementasi Metode Faster Region Convolutional Neural Network (Faster R-CNN) Untuk Pengenalan Jenis Burung Lovebird,” J. Inf. Technol. Ampera, vol. 1, no. 3, pp. 185–197, 2020.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, 2017.

S. Widodo, “Deteksi Covid-19 Pada Citra Ct-Scan Menggunakan Alexnet Dan Stochastic Gradient Descent Dengan Momentum,” Semin. Inf. Kesehat. Nas., vol. 2, pp. 241–251, 2021.

N. N. Prakash, V. Rajesh, D. L. Namakhwa, S. Dwarkanath Pande, and S. H. Ahammad, “A DenseNet CNN-based liver lesion prediction and classification for future medical diagnosis,” Sci. African, vol. 20, p. e01629, 2023.

Y. Fan et al., “Rationalized fruit fly optimization with sine cosine algorithm: A comprehensive analysis,” Expert Syst. Appl., vol. 157, p. 113486, Nov. 2020.

Z. Zahisham, C. P. Lee, and K. M. Lim, “Food Recognition with ResNet-50,” IEEE Int. Conf. Artif. Intell. Eng. Technol. IICAIET 2020, pp. 0–4, 2020.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 770–778, 2016.

J. Li, P. Wang, Y. Zhou, H. Liang, and K. Luan, “Different Machine Learning and Deep Learning Methods for the Classification of Colorectal Cancer Lymph Node Metastasis Images,” vol. 8, no. January, pp. 1–9, 2021.

Abstract viewed = 294 times