Effect of fuzzy logic controller on voltage stability of parallel boost converter configuration

Main Article Content

Adhi Kusmantoro
Takashi Hiyama

Abstract

An increase in electricity load causes a change in grid voltage and current, causing losses to customers. In addition, the source of electricity from fossil energy has also decreased. Therefore this study aims to provide a stable DC voltage source from solar panels, with a Fuzzy Logic Controller (FLC). The proposed method is to design a boost converter in parallel with its output. The boost converter is used to increase the DC voltage from 24 V to 48 V. In this study, FLC is used to adjust the output voltage of each boost converter. This is so that if one of the boost converters fluctuates, the other boost converters will supply a voltage according to the load voltage. The results showed that the FLC can adjust the boost converter output voltage changes. Whereas when using the PI (Integral Proportional) controller, a voltage spike occurs in the range of 0 seconds to 0.6 seconds and the voltage stabilizes within 0.6 seconds to 1 second.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
A. Kusmantoro and T. Hiyama, “Effect of fuzzy logic controller on voltage stability of parallel boost converter configuration”, J. Soft Comput. Explor., vol. 4, no. 2, Jun. 2023.
Section
Articles

References

I. Widaningrum, “Analisis Hubungan Proses Pembelajaran Dengan Kepuasan Mahasiswa Menggunakan Logika Fuzzy,” Sci. J. Informatics, vol. 2, no. 1, pp. 91–98, Feb. 2016, doi: https://doi.org/10.15294/sji.v2i1.4532.

K. Tyas, A. Ms Ubaidillah, and D. Rahmawati, “The application of the tsukamoto fuzzy method in controlling the dryer for shrimp cracker hygienization,” J. Student Res. Explor., vol. 1, no. 2, 2023, doi: https://doi.org/10.52465/josre.v1i2.143.

A. Crismani, S. Toumpis, U. Schilcher, G. Brandner, and C. Bettstetter, “Cooperative Relaying under Spatially and Temporally Correlated Interference,” IEEE Trans. Veh. Technol., vol. 64, no. 10, pp. 4655–4669, 2015, doi: https://doi.org/10.1109/TVT.2014.2372633.

B. Chelladurai, C. K. Sundarabalan, S. N. Santhanam, and J. M. Guerrero, “Interval Type-2 Fuzzy Logic Controlled Shunt Converter Coupled Novel High-Quality Charging Scheme for Electric Vehicles,” IEEE Trans. Ind. Informatics, vol. 17, no. 9, pp. 6084–6093, 2021, doi: https://doi.org/10.1109/TII.2020.3024071.

M. Mosayebi, S. M. Sadeghzadeh, J. M. Guerrero, and M. H. Khooban, “Stabilization of DC Nanogrids Based on Non-Integer General Type-II Fuzzy System,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 67, no. 12, pp. 3108–3112, 2020, doi: https://doi.org/10.1109/TCSII.2020.2964719.

T. Sutikno, A. C. Subrata, and A. Elkhateb, “Evaluation of Fuzzy Membership Function Effects for Maximum Power Point Tracking Technique of Photovoltaic System,” IEEE Access, vol. 9, pp. 109157–109165, 2021, doi: https://doi.org/10.1109/ACCESS.2021.3102050.

L. Farah, A. Hussain, A. Kerrouche, C. Ieracitano, J. Ahmad, and M. Mahmud, “A highly-efficient fuzzy-based controller with high reduction inputs and membership functions for a grid-connected photovoltaic system,” IEEE Access, vol. 8, pp. 163225–163237, 2020, doi: https://doi.org/10.1109/ACCESS.2020.3016981.

“Analysis of twitter sentiment in COVID-19 era using fuzzy logic method,” J. Soft Comput. Explor., vol. 1, no. 1, Mar. 2021, doi: https://doi.org/10.52465/joscex.v2i1.12.

M. Farbood, M. Veysi, M. Shasadeghi, A. Izadian, T. Niknam, and J. Aghaei, “Robustness improvement of computationally efficient cooperative fuzzy model predictive-integral sliding mode control of nonlinear systems,” IEEE Access, vol. 9, pp. 147874–147887, 2021, doi: https://doi.org/10.1109/ACCESS.2021.3123513.

A. Kumar and P. Kumar, “Power Quality Improvement for Grid-connected PV System Based on Distribution Static Compensator with Fuzzy Logic Controller and UVT/ADALINE-based Least Mean Square Controller,” J. Mod. Power Syst. Clean Energy, vol. 9, no. 6, pp. 1289–1299, 2021, doi: https://doi.org/10.35833/MPCE.2021.000285.

K. Sarita et al., “Power Enhancement with Grid Stabilization of Renewable Energy-Based Generation System Using UPQC-FLC-EVA Technique,” IEEE Access, vol. 8, pp. 207443–207464, 2020, doi: https://doi.org/10.1109/ACCESS.2020.3038313.

M. H. Khooban, M. Gheisarnejad, H. Farsizadeh, A. Masoudian, and J. Boudjadar, “A New Intelligent Hybrid Control Approach for DC-DC Converters in Zero-Emission Ferry Ships,” IEEE Trans. Power Electron., vol. 35, no. 6, pp. 5832–5841, 2020, doi: https://doi.org/10.1109/TPEL.2019.2951183.

H. Farsizadeh, M. Gheisarnejad, M. Mosayebi, M. Rafiei, and M. H. Khooban, “An Intelligent and Fast Controller for DC/DC Converter Feeding CPL in a DC Microgrid,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 67, no. 6, pp. 1104–1108, 2020, doi: https://doi.org/10.1109/TCSII.2019.2928814.

G. A. F. De Souza, R. B. Dos Santos, and L. De Abreu Faria, “A PWM Nie-Tan Type-Reducer Circuit for a Low-Power Interval Type-2 Fuzzy Controller,” IEEE Access, vol. 9, pp. 158773–158783, 2021, doi: https://doi.org/10.1109/ACCESS.2021.3131877.

S. Abrazeh, A. Parvaresh, S. R. Mohseni, M. J. Zeitouni, M. Gheisarnejad, and M. H. Khooban, “Nonsingular Terminal Sliding Mode Control with Ultra-Local Model and Single Input Interval Type-2 Fuzzy Logic Control for Pitch Control of Wind Turbines,” IEEE/CAA J. Autom. Sin., vol. 8, no. 3, pp. 690–700, 2021, doi: https://doi.org/10.1109/JAS.2021.1003889.

M. Jafari, Z. Malekjamshidi, D. D. C. Lu, and J. Zhu, “Development of a Fuzzy-Logic-Based Energy Management System for a Multiport Multioperation Mode Residential Smart Microgrid,” IEEE Trans. Power Electron., vol. 34, no. 4, pp. 3283–3301, 2019, doi: https://doi.org/10.1109/TPEL.2018.2850852.

M. Easley, S. Jain, M. B. Shadmand, and H. Abu-Rub, “Computationally Efficient Distributed Predictive Controller for Cascaded Multilevel Impedance Source Inverter with LVRT Capability,” IEEE Access, vol. 7, pp. 35731–35742, 2019, doi: https://doi.org/10.1109/ACCESS.2019.2904392.

L. V. Bellinaso, H. H. Figueira, M. F. Basquera, R. P. Vieira, H. A. Grundling, and L. Michels, “Cascade Control with Adaptive Voltage Controller Applied to Photovoltaic Boost Converters,” IEEE Trans. Ind. Appl., vol. 55, no. 2, pp. 1903–1912, 2019, doi: https://doi.org/10.1109/TIA.2018.2884904.

W. Liang, Y. Liu, B. Ge, and X. Wang, “DC-Link Voltage Balance Control Strategy Based on Multidimensional Modulation Technique for Quasi-Z-Source Cascaded Multilevel Inverter Photovoltaic Power System,” IEEE Trans. Ind. Informatics, vol. 14, no. 11, pp. 4905–4915, 2018, doi: https://doi.org/10.1109/TII.2018.2863692.

K. J. Reddy and N. Sudhakar, “High voltage gain interleaved boost converter with neural network based mppt controller for fuel cell based electric vehicle applications,” IEEE Access, vol. 6, no. c, pp. 3899–3908, 2017, doi: https://doi.org/10.1109/ACCESS.2017.2785832.

A. Intelligent, T.-F. Stabilization, M. Nano, and P. Grids, “Short Papers,” pp. 1–6, 2020.

Z. Liu, A. Mohammadzadeh, H. Turabieh, M. Mafarja, S. S. Band, and A. Mosavi, “A new online learned interval type-3 fuzzy control system for solar energy management systems,” IEEE Access, vol. 9, pp. 10498–10508, 2021, doi: https://doi.org/10.1109/ACCESS.2021.3049301.

R. Bhosale and V. Agarwal, “Fuzzy logic control of the ultracapacitor interface for enhanced transient response and voltage stability of a dc microgrid,” IEEE Trans. Ind. Appl., vol. 55, no. 1, pp. 712–720, 2019, doi: https://doi.org/10.1109/TIA.2018.2870349.

S. N. V. B. Rao, Y. V. Pavan Kumar, M. Amir, and F. Ahmad, “An Adaptive Neuro-Fuzzy Control Strategy for Improved Power Quality in Multi-Microgrid Clusters,” IEEE Access, vol. 10, pp. 128007–128021, 2022, doi: https://doi.org/10.1109/ACCESS.2022.3226670.

M. U. Hassan, M. Humayun, P. Fu, Z. Song, and L. Hua, “Fuzzy Controller Using Circulating Mode for ITER Poloidal Field AC/DC Converter System,” IEEE Trans. Plasma Sci., vol. 47, no. 6, pp. 2890–2895, 2019, doi: https://doi.org/10.1109/TPS.2019.2911090.

M. Aly and H. Rezk, “A differential evolution-based optimized fuzzy logic MPPT method for enhancing the maximum power extraction of proton exchange membrane fuel cells,” IEEE Access, vol. 8, pp. 172219–172252, 2020, doi: https://doi.org/10.1109/ACCESS.2020.3025222.

M. Dehghani, M. Taghipour, G. B. Gharehpetian, and M. Abedi, “Optimized Fuzzy Controller for MPPT of Grid-connected PV Systems in Rapidly Changing Atmospheric Conditions,” J. Mod. Power Syst. Clean Energy, vol. 9, no. 2, pp. 376–383, 2021, doi: https://doi.org/10.35833/MPCE.2019.000086.

M. N. Ali, K. Mahmoud, M. Lehtonen, and M. M. F. Darwish, “An Efficient Fuzzy-Logic Based Variable-Step Incremental Conductance MPPT Method for Grid-Connected PV Systems,” IEEE Access, vol. 9, pp. 26420–26430, 2021, doi: https://doi.org/10.1109/ACCESS.2021.3058052.

H. Rezk, M. Aly, M. Al-Dhaifallah, and M. Shoyama, “Design and Hardware Implementation of New Adaptive Fuzzy Logic-Based MPPT Control Method for Photovoltaic Applications,” IEEE Access, vol. 7, pp. 106427–106438, 2019, doi: https://doi.org/10.1109/ACCESS.2019.2932694.

S. Padmanaban, N. Priyadarshi, M. S. Bhaskar, J. B. Holm-Nielsen, V. K. Ramachandaramurthy, and E. Hossain, “A Hybrid ANFIS-ABC Based MPPT Controller for PV System with Anti-Islanding Grid Protection: Experimental Realization,” IEEE Access, vol. 7, pp. 103377–103389, 2019, doi: https://doi.org/10.1109/ACCESS.2019.2931547.

A. A. Salem, N. A. N. Aldin, A. M. Azmy, and W. S. E. Abdellatif, “Implementation and Validation of an Adaptive Fuzzy Logic Controller for MPPT of PMSG-Based Wind Turbines,” IEEE Access, vol. 9, pp. 165690–165707, 2021, doi: https://doi.org/10.1109/ACCESS.2021.3134947.

N. Priyadarshi, S. Padmanaban, J. B. Holm-Nielsen, F. Blaabjerg, and M. S. Bhaskar, “An Experimental Estimation of Hybrid ANFIS-PSO-Based MPPT for PV Grid Integration under Fluctuating Sun Irradiance,” IEEE Syst. J., vol. 14, no. 1, pp. 1218–1229, 2020, doi: https://doi.org/10.1109/JSYST.2019.2949083.

N. T. T. Vu, H. D. Nguyen, and A. T. Nguyen, “Reinforcement Learning-Based Adaptive Optimal Fuzzy MPPT Control for Variable Speed Wind Turbine,” IEEE Access, vol. 10, no. September, pp. 95771–95780, 2022, doi: https://doi.org/10.1109/ACCESS.2022.3205124.

M. Sam and M. Sam, “Three stages algorithm for finding optimal solution of balanced triangular fuzzy transportation problems,” J. Soft Comput. Explor., vol. 2, no. 1, pp. 25–32, 2021, doi: https://doi.org/10.52465/joscex.v2i1.24.

A. A. Al Alahmadi et al., “Hybrid wind/PV/battery energy management-based intelligent non-integer control for smart DC-microgrid of smart university,” IEEE Access, vol. 9, pp. 98948–98961, 2021, doi: https://doi.org/10.1109/ACCESS.2021.3095973.

N. Rana, S. Banerjee, S. K. Giri, A. Trivedi, and S. S. Williamson, “Modeling, analysis and implementation of an improved interleaved buck-boost converter,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 68, no. 7, pp. 2588–2592, 2021, doi: https://doi.org/10.1109/TCSII.2021.3056478.

M. E. Albira and M. A. Zohdy, “Adaptive Model Predictive Control for DC-DC Power Converters with Parameters’ Uncertainties,” IEEE Access, vol. 9, pp. 135121–135131, 2021, doi: https://doi.org/10.1109/ACCESS.2021.3113299.

Y. Zheng, J. Guo, and K. N. Leung, “A Single-Inductor Multiple-Output Buck/Boost DC-DC Converter with Duty-Cycle and Control-Current Predictor,” IEEE Trans. Power Electron., vol. 35, no. 11, pp. 12022–12039, 2020, doi: https://doi.org/10.1109/TPEL.2020.2988940.

C. A. Soriano-Rangel, W. He, F. Mancilla-David, and R. Ortega, “Voltage Regulation in Buck-Boost Converters Feeding an Unknown Constant Power Load: An Adaptive Passivity-Based Control,” IEEE Trans. Control Syst. Technol., vol. 29, no. 1, pp. 395–402, 2021, doi: https://doi.org/10.1109/TCST.2019.2959535.

X. Chen, A. A. Pise, J. Elmes, and I. Batarseh, “Ultra-highly efficient low-power bidirectional cascaded buck-boost converter for portable PV-Battery-devices applications,” IEEE Trans. Ind. Appl., vol. 55, no. 4, pp. 3989–4000, 2019, doi: https://doi.org/10.1109/TIA.2019.2911566.

L. Schmitz, D. C. Martins, and R. F. Coelho, “Comprehensive conception of high step-Up DC-DC converters with coupled inductor and voltage multipliers techniques,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 67, no. 6, pp. 2140–2151, 2020, doi: https://doi.org/10.1109/TCSI.2020.2973154.

K. Akhilesh and N. Lakshminarasamma, “Dead-Zone Free Control Scheme for H-Bridge Buck-Boost Converter,” IEEE Trans. Ind. Appl., vol. 56, no. 6, pp. 6619–6629, 2020, doi: https://doi.org/10.1109/TIA.2020.3018423.

C. Restrepo, G. Garcia, F. Flores-Bahamonde, D. Murillo-Yarce, J. I. Guzman, and M. Rivera, “Current Control of the Coupled-Inductor Buck-Boost DC-DC Switching Converter Using a Model Predictive Control Approach,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 8, no. 4, pp. 3348–3360, 2020, doi: https://doi.org/10.1109/JESTPE.2020.2992622.

M. R. Banaei and H. A. F. Bonab, “A High Efficiency Nonisolated Buck-Boost Converter Based on ZETA Converter,” IEEE Trans. Ind. Electron., vol. 67, no. 3, pp. 1991–1998, 2020, doi: https://doi.org/10.1109/TIE.2019.2902785.

Abstract viewed = 192 times