Enhancing cirrhosis detection: A deep learning approach with convolutional neural networks
Main Article Content
Abstract
Cirrhosis, a prevalent and life-threatening liver condition, demands early detection for effective intervention. This study investigates the potential of machine learning algorithms, including Convolutional Neural Networks (CNN), Support Vector Machines (SVM), Decision Trees, K-Nearest Neighbors (KNN), Gaussian Naive Bayes (GNB), and Gradient Boosting (GBoost), in cirrhosis prediction using a dataset from Kaggle containing 418 observations and 20 attributes. Performance evaluation involves metrics like accuracy, precision, recall, and F1-score, revealing CNN's superior performance with an 84% accuracy rate. The study highlights the importance of algorithm selection and feature engineering in medical diagnosis. Moreover, a comparison with traditional machine learning techniques underscores CNN's prowess in this domain. Beyond cirrhosis, CNNs offer promise for automating feature extraction from medical imagery and recognizing complex patterns, potentially transforming diagnostic accuracy in healthcare.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
E. Ng, A. K. Le, M. H. Nguyen, and S. X. Wang, “Early Multiplexed Detection of Cirrhosis using Giant Magnetoresistive Biosensors with Protein Biomarkers,” ACS Sens., vol. 5, no. 10, pp. 3049–3057, Oct. 2020, doi: 10.1021/acssensors.0c00232.
S. Nowak et al., “Detection of liver cirrhosis in standard T2-weighted MRI using deep transfer learning,” European Radiology, vol. 31, no. 11, pp. 8807–8815, Nov. 2021, doi: 10.1007/s00330-021-07858-1.
A. P. Kubesch Kai Henrik; Abramowski, Hannes; Dultz, Georg; Graf, Christina; Filmann, Natalie; Zeuzem, Stefan; Bojunga, Jörg; Friedrich-Rust, Mireen, “The presence of liver cirrhosis is a strong negative predictor of survival for patients admitted to the intensive care unit – Cirrhosis in intensive care patients,” Z Gastroenterol, vol. 59, no. 07, pp. 657–664, Mar. 2021, doi: 10.1055/a-1401-2387.
Matthias Buechter and Guido Gerken, “Non-invasive detection of liver cirrhosis - the ‘Essen algorithm,’” Non-invasive detection of liver cirrhosis - the “Essen algorithm,” vol. 7, p. 57, 2021, doi: 10.20517/2394-5079.2021.99.
I. M. I’tisyam, N. Wijaya, and R. Pradila, “Implementation of Deep Learning for Classification of Mushroom Using CNN Algorithm,” International Journal of Informatics and Computation; Vol 5 No 1 (2023): International Journal of Informatics and ComputationDO - 10.35842/ijicom.v5i1.42, Aug. 2023, [Online]. Available: https://ijicom.respati.ac.id/index.php/ijicom/article/view/42
B. Abdellatif, Z. Fatima Laamiri, E. Lahcen, R. Bouchra, and H. Rachid, “Prevalence of liver fibrosis and cirrhosis in 699 Moroccan patients with chronic hepatitis C,” PAMJ, vol. 39, no. 32, May 2021, doi: 10.11604/pamj.2021.39.32.21235.
M. H. Zissen, Z. J. Wang, J. Yee, R. Aslam, A. Monto, and B. M. Yeh, “Contrast-Enhanced CT Quantification of the Hepatic Fractional Extracellular Space: Correlation With Diffuse Liver Disease Severity,” American Journal of Roentgenology, vol. 201, no. 6, pp. 1204–1210, Dec. 2013, doi: 10.2214/AJR.12.10039.
S.-F. Wang, Y.-T. Huang, C.-H. Huang, S.-H. Chang, and C.-Y. Lin, “Fibrosis index predicts variceal bleeding and reduces need for nonselective beta-blocker in compensated cirrhosis with initial small esophageal varices without red-color sign,” Ann Transl Med, vol. 8, no. 19, pp. 1223–1223, Oct. 2020, doi: 10.21037/atm-20-2444.
G. Y. Geong, S. H. Kang, and C. M. Lee, “An Updated Review on the Epidemiology, Pathophysiology, Etiology and Diagnosis of Liver Cirrhosis,” Preprints, Mar. 2019, doi: 10.20944/preprints201903.0128.v1.
T. Li et al., “Development And Validation Of A Simple Model For Detection Of Early Hepatocellular Carcinoma In A Liver Cirrhosis Cohort,” CMAR, vol. Volume 11, pp. 9379–9386, Nov. 2019, doi: 10.2147/CMAR.S221050.
Y. Huang et al., “Predicting hepatocellular carcinoma development for cirrhosis patients via methylation detection of heparocarcinogenesis-related genes.,” J Cancer, vol. 9, no. 12, pp. 2203–2210, 2018, doi: 10.7150/jca.24024.
T. Lv, X. Pan, Y. Zhu, and L. Li, “Unsupervised medical images denoising via graph attention dual adversarial network,” Applied Intelligence, vol. 51, no. 6, pp. 4094–4105, Jun. 2021, doi: 10.1007/s10489-020-02016-4.
E. Adeli, D. Kwon, and K. M. Pohl, “Multi-label Transduction for Identifying Disease Comorbidity Patterns,” in Medical Image Computing and Computer Assisted Intervention – MICCAI 2018, A. F. Frangi, J. A. Schnabel, C. Davatzikos, C. Alberola-López, and G. Fichtinger, Eds., Cham: Springer International Publishing, 2018, pp. 575–583.
E. Pinho and C. Costa, “Unsupervised Learning for Concept Detection in Medical Images: A Comparative Analysis,” Applied Sciences, vol. 8, no. 8, p. 1213, Jul. 2018, doi: 10.3390/app8081213.
Department of Biomedical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran, F. Nikroorezaei, and S. Saraf Esmaili, “Application of Models based on Human Vision in Medical Image Processing: A Review Article,” IJIGSP, vol. 11, no. 12, pp. 23–28, Dec. 2019, doi: 10.5815/ijigsp.2019.12.03.
L. Riou, J. Toczek, A. Broisat, C. Ghezzi, and L. Djaileb, “Identifying the leukocyte uptake pattern of inflammation imaging agents: Current limitations and potential impact,” Journal of Nuclear Cardiology, vol. 28, no. 4, pp. 1646–1648, Aug. 2021, doi: 10.1007/s12350-019-01979-3.
A. Guo, N. R. Mazumder, D. P. Ladner, and R. E. Foraker, “Predicting mortality among patients with liver cirrhosis in electronic health records with machine learning,” PLOS ONE, vol. 16, no. 8, p. e0256428, Aug. 2021, doi: 10.1371/journal.pone.0256428.
R. L. Satria and M. H. Wathan, “ConFruit: Effective Fruit Classification Using CNN Algorithm,” International Journal of Informatics and Computation; Vol 5 No 1 (2023): International Journal of Informatics and ComputationDO - 10.35842/ijicom.v5i1.44, Aug. 2023, [Online]. Available: https://ijicom.respati.ac.id/index.php/ijicom/article/view/44
S. M. Hassan, A. K. Maji, M. Jasiński, Z. Leonowicz, and E. Jasińska, “Identification of Plant-Leaf Diseases Using CNN and Transfer-Learning Approach,” Electronics, vol. 10, no. 12, p. 1388, Jun. 2021, doi: 10.3390/electronics10121388.
S. Ankalaki and M. N. Thippeswamy, “Static and Dynamic Human Activity Detection Using Multi CNN-ELM Approach,” in Emerging Research in Computing, Information, Communication and Applications, N. R. Shetty, L. M. Patnaik, H. C. Nagaraj, P. N. Hamsavath, and N. Nalini, Eds., Singapore: Springer Singapore, 2022, pp. 207–218.
V. Kailkhura, S. Aravindh, S. S. Jha, and N. Jayanthi, “Ensemble learning-based approach for crack detection using CNN,” in 2020 4th International Conference on Trends in Electronics and Informatics (ICOEI)(48184), Jun. 2020, pp. 808–815. doi: 10.1109/ICOEI48184.2020.9143035.
Y. Yin, D. Yakar, R. A. J. O. Dierckx, K. B. Mouridsen, T. C. Kwee, and R. J. de Haas, “Liver fibrosis staging by deep learning: a visual-based explanation of diagnostic decisions of the model,” European Radiology, vol. 31, no. 12, pp. 9620–9627, Dec. 2021, doi: 10.1007/s00330-021-08046-x.
S. Wang, Y. Wang, Q. Zhao, Z. Yang, W. Guo, and X. Wang, “Exploring Classification Capability of CNN Features,” in Data Science, J. Zeng, P. Qin, W. Jing, X. Song, and Z. Lu, Eds., Singapore: Springer Nature Singapore, 2021, pp. 268–282.
M. Li, J. Han, and J. Yang, “Automatic feature extraction and fusion recognition of motor imagery EEG using multilevel multiscale CNN,” Medical & Biological Engineering & Computing, vol. 59, no. 10, pp. 2037–2050, Oct. 2021, doi: 10.1007/s11517-021-02396-w.
M. Graziani, T. Lompech, H. Müller, A. Depeursinge, and V. Andrearczyk, “Interpretable CNN Pruning for Preserving Scale-Covariant Features in Medical Imaging,” in Interpretable and Annotation-Efficient Learning for Medical Image Computing, J. Cardoso, H. Van Nguyen, N. Heller, P. Henriques Abreu, I. Isgum, W. Silva, R. Cruz, J. Pereira Amorim, V. Patel, B. Roysam, K. Zhou, S. Jiang, N. Le, K. Luu, R. Sznitman, V. Cheplygina, D. Mateus, E. Trucco, and S. Abbasi, Eds., Cham: Springer International Publishing, 2020, pp. 23–32.
S. Guedria, N. De Palma, F. Renard, and N. Vuillerme, “Automating CNN Parallelism with Components,” in 2019 International Conference on Computational Science and Computational Intelligence (CSCI), Dec. 2019, pp. 943–948. doi: 10.1109/CSCI49370.2019.00179.
Matthias Buechter and Guido Gerken, “Non-invasive detection of liver cirrhosis - the ‘Essen algorithm,’” Non-invasive detection of liver cirrhosis - the “Essen algorithm,” vol. 7, p. 57, 2021, doi: 10.20517/2394-5079.2021.99.
J. Wedd and K. Nair, “Predicting Future Complications of Cirrhosis,” Current Hepatology Reports, vol. 18, no. 1, pp. 9–19, Mar. 2019, doi: 10.1007/s11901-019-00445-5.
N. Lanthier, P. Stärkel, and G. Dahlqvist, “Frailty, sarcopenia and mortality in cirrhosis: what is the best assessment, how to interpret the data correctly and what interventions are possible?,” Clinics and Research in Hepatology and Gastroenterology, vol. 45, no. 2, p. 101661, Mar. 2021, doi: 10.1016/j.clinre.2021.101661.
A. Hari, “Muscular abnormalities in liver cirrhosis,” WJG, vol. 27, no. 29, pp. 4862–4878, Aug. 2021, doi: 10.3748/wjg.v27.i29.4862.
R. Burson and K. J. Moran, “Improving Patient Outcomes,” Home Healthcare Now, vol. 36, no. 2, 2018, [Online]. Available: https://journals.lww.com/homehealthcarenurseonline/fulltext/2018/03000/improving_patient_outcomes.8.aspx
S. Wiyono and T. Abidin, “COMPARATIVE STUDY OF MACHINE LEARNING KNN, SVM, AND DECISION TREE ALGORITHM TO PREDICT STUDENT’S PERFORMANCE,” Int. J. Res. Granthaalayah, vol. 7, no. 1, pp. 190–196, Jan. 2019, doi: 10.29121/granthaalayah.v7.i1.2019.1048.
K. Uma Pavan Kumar, O. Gandhi, M. Venkata Reddy, and S. V. N. Srinivasu, “Usage of KNN, Decision Tree and Random Forest Algorithms in Machine Learning and Performance Analysis with a Comparative Measure,” in Machine Intelligence and Soft Computing, D. Bhattacharyya and N. Thirupathi Rao, Eds., Singapore: Springer Singapore, 2021, pp. 473–479.
S. Nowak et al., “Detection of liver cirrhosis in standard T2-weighted MRI using deep transfer learning,” European Radiology, vol. 31, no. 11, pp. 8807–8815, Nov. 2021, doi: 10.1007/s00330-021-07858-1.
A. Guo, N. R. Mazumder, D. P. Ladner, and R. E. Foraker, “Predicting mortality among patients with liver cirrhosis in electronic health records with machine learning,” PLOS ONE, vol. 16, no. 8, p. e0256428, Aug. 2021, doi: 10.1371/journal.pone.0256428.
G. N. Ioannou et al., “Assessment of a Deep Learning Model to Predict Hepatocellular Carcinoma in Patients With Hepatitis C Cirrhosis,” JAMA Network Open, vol. 3, no. 9, pp. e2015626–e2015626, Sep. 2020, doi: 10.1001/jamanetworkopen.2020.15626.
S. Kulkarni and A. Biswas, “Sarcasm Detection Methods in Deep Learning: Literature Review,” in ICT Analysis and Applications, S. Fong, N. Dey, and A. Joshi, Eds., Singapore: Springer Singapore, 2020, pp. 507–512.
Y. Liu et al., “Deep Convolutional Neural Network-Aided Detection of Portal Hypertension in Patients With Cirrhosis,” Clinical Gastroenterology and Hepatology, vol. 18, no. 13, pp. 2998-3007.e5, Dec. 2020, doi: 10.1016/j.cgh.2020.03.034.
R. Fonseca, O. Guarnizo, D. Suntaxi, A. Cadiz, and W. Creixell, “Convolutional Neural Network Feature Extraction Using Covariance Tensor Decomposition,” IEEE Access, vol. 9, pp. 66646–66660, 2021, doi: 10.1109/ACCESS.2021.3076033.
R. L. Satria Putra and M. H. Wathan, “Shallots Classification using CNN,” International Journal of Informatics and Computation; Vol 3 No 1 (2021): International Journal of Informatics and ComputationDO - 10.35842/ijicom.v3i2.41, Feb. 2022, [Online]. Available: https://ijicom.respati.ac.id/index.php/ijicom/article/view/41
C. Xiao and J. Sun, “Convolutional Neural Networks (CNN),” in Introduction to Deep Learning for Healthcare, C. Xiao and J. Sun, Eds., Cham: Springer International Publishing, 2021, pp. 83–109. doi: 10.1007/978-3-030-82184-5_6.
R. Vaila, J. Chiasson, and V. Saxena, “Feature Extraction Using Spiking Convolutional Neural Networks,” in Proceedings of the International Conference on Neuromorphic Systems, in ICONS ’19. New York, NY, USA: Association for Computing Machinery, 2019. doi: 10.1145/3354265.3354279.
Y. Zhou, Z. Zhu, and B. Xin, “One-step Local Feature Extraction using CNN,” in 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), Nov. 2020, pp. 1–6. doi: 10.1109/ICNSC48988.2020.9238094.
V. Singh, M. K. Gourisaria, and H. Das, “Performance Analysis of Machine Learning Algorithms for Prediction of Liver Disease,” in 2021 IEEE 4th International Conference on Computing, Power and Communication Technologies (GUCON), Sep. 2021, pp. 1–7. doi: 10.1109/GUCON50781.2021.9573803.
X. Pei, Q. Deng, Z. Liu, X. Yan, and W. Sun, “Machine Learning Algorithms for Predicting Fatty Liver Disease,” Annals of Nutrition and Metabolism, vol. 77, no. 1, pp. 38–45, Apr. 2021, doi: 10.1159/000513654.
S. S. Sarvestany et al., “Effective Detection of Compensated Cirrhosis Using Machine Learning,” SSRN Journal, 2020, doi: 10.2139/ssrn.3705267.
I. Altaf, M. A. Butt, and M. Zaman, “A Pragmatic Comparison of Supervised Machine Learning Classifiers for Disease Diagnosis,” in 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA), Sep. 2021, pp. 1515–1520. doi: 10.1109/ICIRCA51532.2021.9544582.
A. Guo, N. R. Mazumder, D. P. Ladner, and R. E. Foraker, “Predicting mortality among patients with liver cirrhosis in electronic health records with machine learning,” PLOS ONE, vol. 16, no. 8, p. e0256428, Aug. 2021, doi: 10.1371/journal.pone.0256428.
J. Bosch et al., “A Machine Learning Approach to Liver Histological Evaluation Predicts Clinically Significant Portal Hypertension in NASH Cirrhosis,” Hepatology, vol. 74, no. 6, 2021, [Online]. Available: https://journals.lww.com/hep/fulltext/2021/12000/a_machine_learning_approach_to_liver_histological.19.aspx
B. P. Sowmya and M. C. Supriya, “Convolutional Neural Network (CNN) Fundamental Operational Survey,” in Intelligent Computing Paradigm and Cutting-edge Technologies, M. N. Favorskaya, S.-L. Peng, M. Simic, B. Alhadidi, and S. Pal, Eds., Cham: Springer International Publishing, 2021, pp. 245–258.
S. Suganyadevi, V. Seethalakshmi, and K. Balasamy, “A review on deep learning in medical image analysis,” International Journal of Multimedia Information Retrieval, vol. 11, no. 1, pp. 19–38, Mar. 2022, doi: 10.1007/s13735-021-00218-1.
M. Qadir, S. Tehsin, and S. Kausar, “Detection of Copy Move Forgery in Medical Images Using Deep Learning,” in 2021 International Conference on Artificial Intelligence and Mechatronics Systems (AIMS), Apr. 2021, pp. 1–6. doi: 10.1109/AIMS52415.2021.9466005.
T.-H. Kim et al., “Discrimination of Chronic Liver Disease in Non-contrast CT Images using CNN-Deep Learning,” in Intelligent Systems and Applications, K. Arai, S. Kapoor, and R. Bhatia, Eds., Cham: Springer International Publishing, 2021, pp. 717–722.
J. Liao, D. Liu, G. Su, and L. Liu, “Recognizing diseases with multivariate physiological signals by a DeepCNN-LSTM network,” Applied Intelligence, vol. 51, no. 11, pp. 7933–7945, Nov. 2021, doi: 10.1007/s10489-021-02309-2.
J. Chen, “Using CNN for detection of diseases,” Journal of Physics: Conference Series, vol. 1936, no. 1, p. 012022, Jun. 2021, doi: 10.1088/1742-6596/1936/1/012022.
A. Rath, D. Mishra, and G. Panda, “Deep Learning Neural Network and CNN-Based Diagnosis of Heart Diseases,” in Technical Advancements of Machine Learning in Healthcare, H. K. Tripathy, S. Mishra, P. K. Mallick, and A. R. Panda, Eds., Singapore: Springer Singapore, 2021, pp. 169–195. doi: 10.1007/978-981-33-4698-7_9.
F. Kanwal et al., “Development, Validation, and Evaluation of a Simple Machine Learning Model to Predict Cirrhosis Mortality,” JAMA Network Open, vol. 3, no. 11, pp. e2023780–e2023780, Nov. 2020, doi: 10.1001/jamanetworkopen.2020.23780.
D. Chicco and L. Oneto, “Computational intelligence identifies alkaline phosphatase (ALP), alpha-fetoprotein (AFP), and hemoglobin levels as most predictive survival factors for hepatocellular carcinoma,” Health Informatics J, vol. 27, no. 1, p. 1460458220984205, Jan. 2021, doi: 10.1177/1460458220984205.
P. Enzinger and S. Li, “Use Case—Fraud Detection Using Machine Learning Techniques,” in The Digital Journey of Banking and Insurance, Volume II: Digitalization and Machine Learning, V. Liermann and C. Stegmann, Eds., Cham: Springer International Publishing, 2021, pp. 33–49. doi: 10.1007/978-3-030-78829-2_3.
Matthias Buechter and Guido Gerken, “Non-invasive detection of liver cirrhosis - the ‘Essen algorithm,’” Non-invasive detection of liver cirrhosis - the “Essen algorithm,” vol. 7, p. 57, 2021, doi: 10.20517/2394-5079.2021.99.
R. A. Khan, Y. Luo, and F.-X. Wu, “Machine learning based liver disease diagnosis: A systematic review,” Neurocomputing, vol. 468, pp. 492–509, Jan. 2022, doi: 10.1016/j.neucom.2021.08.138.
F. Kanwal et al., “Development, Validation, and Evaluation of a Simple Machine Learning Model to Predict Cirrhosis Mortality,” JAMA Network Open, vol. 3, no. 11, pp. e2023780–e2023780, Nov. 2020, doi: 10.1001/jamanetworkopen.2020.23780.
H. Seo et al., “Machine learning techniques for biomedical image segmentation: An overview of technical aspects and introduction to state-of-art applications,” Medical Physics, vol. 47, no. 5, pp. e148–e167, May 2020, doi: 10.1002/mp.13649.
S. H. Ismael, S. W. Kareem, and F. H. Almukhtar, “Medical Image Classification Using Different Machine Learning Algorithms,” AL-Rafidain Journal of Computer Sciences and Mathematics, vol. 14, no. 1, pp. 135–147, 2020, doi: 10.33899/csmj.2020.164682.
J. J. Ranjani and C. Jeyamala, “Chapter 9 - Machine learning algorithms for medical image security,” in Intelligent Data Security Solutions for e-Health Applications, A. K. Singh and M. Elhoseny, Eds., Academic Press, 2020, pp. 169–183. doi: 10.1016/B978-0-12-819511-6.00009-1.
W. S. Monroe, T. Anthony, M. M. Tanik, and F. M. Skidmore, “Towards a Framework for Validating Machine Learning Results in Medical Imaging: Opening the Black Box,” in Proceedings of the Practice and Experience in Advanced Research Computing on Rise of the Machines (Learning), in PEARC ’19. New York, NY, USA: Association for Computing Machinery, 2019. doi: 10.1145/3332186.3332193.
H. Seo et al., “Machine learning techniques for biomedical image segmentation: An overview of technical aspects and introduction to state-of-art applications,” Medical Physics, vol. 47, no. 5, pp. e148–e167, May 2020, doi: 10.1002/mp.13649.
H. Yang, X. Sun, Y. Sun, L. Cui, and B. Li, “Ultrasound Image-Based Diagnosis of Cirrhosis with an End-to-End Deep Learning model,” in 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Dec. 2020, pp. 1193–1196. doi: 10.1109/BIBM49941.2020.9313579.
L. L. Iglesias et al., “A primer on deep learning and convolutional neural networks for clinicians,” Insights into Imaging, vol. 12, no. 1, p. 117, Aug. 2021, doi: 10.1186/s13244-021-01052-z.
B. P. Sowmya and M. C. Supriya, “Convolutional Neural Network (CNN) Fundamental Operational Survey,” in Intelligent Computing Paradigm and Cutting-edge Technologies, M. N. Favorskaya, S.-L. Peng, M. Simic, B. Alhadidi, and S. Pal, Eds., Cham: Springer International Publishing, 2021, pp. 245–258.
K. Uehara, M. Murakawa, H. Nosato, and H. Sakanashi, “Explainable Feature Embedding using Convolutional Neural Networks for Pathological Image Analysis,” in 2020 25th International Conference on Pattern Recognition (ICPR), Jan. 2021, pp. 4560–4565. doi: 10.1109/ICPR48806.2021.9412564.
G. S. Harshpreet Kaur, “The Diagnosis of Chronic Liver Disease using Machine Learning Techniques,” ITII, vol. 9, no. 2, pp. 554–564, Mar. 2021, doi: 10.17762/itii.v9i2.382.
G. Shaheamlung, H. Kaur, and M. Kaur, “A Survey on machine learning techniques for the diagnosis of liver disease,” in 2020 International Conference on Intelligent Engineering and Management (ICIEM), Jun. 2020, pp. 337–341. doi: 10.1109/ICIEM48762.2020.9160097.
Z.-M. Zou, D.-H. Chang, H. Liu, and Y.-D. Xiao, “Current updates in machine learning in the prediction of therapeutic outcome of hepatocellular carcinoma: what should we know?,” Insights into Imaging, vol. 12, no. 1, p. 31, Mar. 2021, doi: 10.1186/s13244-021-00977-9.
D. Varshney, B. Babukhanwala, J. Khan, D. Saxena, and A. k. Singh, “Machine Learning Techniques for Plant Disease Detection,” in 2021 5th International Conference on Trends in Electronics and Informatics (ICOEI), Jun. 2021, pp. 1574–1581. doi: 10.1109/ICOEI51242.2021.9453053.
A. Spann et al., “Applying Machine Learning in Liver Disease and Transplantation: A Comprehensive Review,” Hepatology, vol. 71, no. 3, 2020, [Online]. Available: https://journals.lww.com/hep/fulltext/2020/03000/applying_machine_learning_in_liver_disease_and.25.aspx