Narrative literature review: Efficiency enhancement - user trust in chatbots as a tool for improving service quality by humans
Main Article Content
Abstract
Chatbots have become efficient and reliable tools for instant and real-time information dissemination. Despite their effectiveness, user trust in chatbot systems remains relatively low. A holistic approach is necessary, integrating user emotional experiences, trust-building strategies, and continuous technological refinement to maximize chatbot benefits across various sectors. This research explores the potential for selective information dissemination based on user preferences using chatbots combined with artificial intelligence. Through a narrative approach, the study reviews literature and analyzes eight articles related to chatbots' application in information dissemination. The results indicate that chatbots are efficient in providing information and can be customized for various needs, such as population services, reminder notifications, and book processing. Chatbots have the potential to enhance services and can be integrated into information systems to improve service quality. However, challenges such as reliance on high-quality data and machine learning, difficulties in understanding non-formal language or slang, and limitations in handling complex questions need to be addressed for chatbots to reach their full potential.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
P. D. L. Santoso, I. Riski, N. Kholik, M. R. Akbar, A. Saifudin, and Y. Yulianti, “Penerapan Artificial Intelligencedalam Aplikasi Chatbot sebagai Media Informasi dan Pembelajaran mengenai Kebudayaan Bangsa,” J. Inform. Univ. Pamulang, vol. 6, no. 3, pp. 579–589, 2021, doi: 10.32493/informatika.v6i3.11845.
A. Idris, S. Hendratmoko, D. A. Lestari, and A. A. T. Mulyono, “Pelatihan Mendeley Untuk Penulisan Sitasi Karya Ilmiah Bagi Mahasiswa Universitas Islam Kadiri,” Cendekia J. Pengabdi. Masy., vol. 3, no. 2, p. 105, Dec. 2021, doi: 10.32503/cendekia.v3i2.2124.
D. Huang, D. G. Markovitch, and R. A. Stough, “Can chatbot customer service match human service agents on customer satisfaction? An investigation in the role of trust,” J. Retail. Consum. Serv., vol. 76, p. 103600, Jan. 2024, doi: 10.1016/j.jretconser.2023.103600.
C. Wang, Y. Li, W. Fu, and J. Jin, “Whether to trust chatbots: Applying the event-related approach to understand consumers’ emotional experiences in interactions with chatbots in e-commerce,” J. Retail. Consum. Serv., vol. 73, p. 103325, Jul. 2023, doi: 10.1016/j.jretconser.2023.103325.
E. Glikson and A. W. Woolley, “Human Trust in Artificial Intelligence: Review of Empirical Research,” Acad. Manag. Ann., vol. 14, no. 2, pp. 627–660, Jul. 2020, doi: 10.5465/annals.2018.0057.
B. R. Ranoliya, N. Raghuwanshi, and S. Singh, “Chatbot for university related FAQs,” in 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), IEEE, Sep. 2017, pp. 1525–1530. doi: 10.1109/ICACCI.2017.8126057.
N. (Iris) Xue, X. (Stella) Liu, L. C. Wan, and Y. Hou, “Relaxing or challenging? How social crowding influences the effectiveness of activity-based destination advertising,” Tour. Manag., vol. 100, p. 104839, Feb. 2024, doi: 10.1016/j.tourman.2023.104839.
E. Bahartyan, N. Bahtiar, and I. Waspada, “INTEGRASI CHATBOT BERBASIS AIML PADA WEBSITE E-COMMERCE SEBAGAI VIRTUAL ASSISTANT DALAM PENCARIAN DAN PEMESANAN PRODUK (STUDI KASUS TOKO BUKU ONLINE EDU4INDO.COM),” J. Masy. Inform. Vol 5, No 10 J. Masy. Inform. - 10.14710/jmasif.5.10.8451 , Oct. 2015, [Online]. Available: https://ejournal.undip.ac.id/index.php/jmasif/article/view/8451
D. Adiyoko, P. Hendradi, and S. Nugroho, “Sistem Layanan Surat Pengantar Kependudukan dengan Menggunakan Telegram Bot,” Kaji. Ilm. Inform. dan Komput., vol. 4, no. 1, 2023, doi: https://doi.org/10.30865/klik.v4i1.1055.
L. Floridi et al., “AI4People—An Ethical Framework for a Good AI Society: Opportunities, Risks, Principles, and Recommendations,” Minds Mach., vol. 28, no. 4, pp. 689–707, Dec. 2018, doi: 10.1007/s11023-018-9482-5.
H. E. Froehlich, R. R. Gentry, and B. S. Halpern, “Global change in marine aquaculture production potential under climate change,” Nat. Ecol. Evol., vol. 2, no. 11, pp. 1745–1750, Sep. 2018, doi: 10.1038/s41559-018-0669-1.
J. F. Wolfswinkel, E. Furtmueller, and C. P. M. Wilderom, “Using grounded theory as a method for rigorously reviewing literature,” Eur. J. Inf. Syst., vol. 22, no. 1, pp. 45–55, Jan. 2013, doi: 10.1057/ejis.2011.51.
A. I. Agus et al., Studi Literatur (Systematic, Narrative, Scoping, Argumentative, Theoritical). Eureka Media Aksara, 2023.
D. Lestari, F. Ramdhani, M. Jauhar Ruliansyah, R. B. Richardviki Beay, and D. I. Mulyana, “Implementasi Chatbot Telegram Dalam Meningkatkan Partisipasi Kegiatan Warga,” J. Pengabdi. Kpd. Masy. Nusant., vol. 4, no. 2 SE-, pp. 866–874, Jul. 2023, [Online]. Available: https://ejournal.sisfokomtek.org/index.php/jpkm/article/view/954
D. Rudhistiar, R. P. Prasetya, D. Abdurrohman, and M. S. S. Ibrahim, “Pembangunan dan Pengembangan Sistem Chat Bot SPADA Menggunakan Telegram,” Pros. SENIATI, vol. 6, no. 3, pp. 472–477, Jul. 2022, doi: 10.36040/seniati.v6i3.5073.
H. Naibaho, F. Adi, . V., and . S., “Pengaruh Lingkungan Kampus Terhadap Motivasi Belajar Mahasiswa (Studi Kasus Universitas Pelita Harapan Surabaya),” J. Manaj. Pemasar., vol. 5, no. 1 SE-, pp. 22–26, Mar. 2012, doi: 10.9744/pemasaran.5.1.22-26.
G. Guspatni, A. Andromeda, and B. Bayharti, “Peningkatan Aktivitas Menjawab dan Kualitas Jawaban Mahasiswa dengan Pertanyaan Prompting pada Mata Kuliah Strategi Pembelajaran Kimia,” J. EKSAKTA Pendidik., vol. 2, no. 1, p. 101, May 2018, doi: 10.24036/jep/vol2-iss1/128.
C. Longoni, A. Bonezzi, and C. K. Morewedge, “Resistance to Medical Artificial Intelligence,” J. Consum. Res., vol. 46, no. 4, pp. 629–650, Dec. 2019, doi: 10.1093/jcr/ucz013.
J. M. Logg, J. A. Minson, and D. A. Moore, “Algorithm appreciation: People prefer algorithmic to human judgment,” Organ. Behav. Hum. Decis. Process., vol. 151, pp. 90–103, Mar. 2019, doi: 10.1016/j.obhdp.2018.12.005.
M. Yeomans, A. Shah, S. Mullainathan, and J. Kleinberg, “Making sense of recommendations,” J. Behav. Decis. Mak., vol. 32, no. 4, pp. 403–414, Oct. 2019, doi: 10.1002/bdm.2118.
N. Castelo, M. W. Bos, and D. R. Lehmann, “Task-Dependent Algorithm Aversion,” J. Mark. Res., vol. 56, no. 5, pp. 809–825, Oct. 2019, doi: 10.1177/0022243719851788.
V. T. Nguyen, L. T. Phong, and N. T. K. Chi, “The impact of AI chatbots on customer trust: an empirical investigation in the hotel industry,” Consum. Behav. Tour. Hosp., vol. 18, no. 3, pp. 293–305, Aug. 2023, doi: 10.1108/CBTH-06-2022-0131.
N. A. Ramdani, A. Asriyanik, and W. Apriandari, “Implementasi Azure Cognitive Services dalam Pengembangan Chatbot Layanan Informasi Skripsi,” J. Ilm. Komput. Graf., vol. 15, no. 1, pp. 160–172, 2022, doi: https://doi.org/https://doi.org/10.51903/pixel.v16i2.
E. B. Manullang, R. Hartati, and R. D. Nasution, “Utilization of Chatbot Telegram AI to Promote Students’ Creative and Innovative Entrepreneurship in Learning Context,” SALTeL J. (Southeast Asia Lang. Teach. Learn., vol. 6, no. 2, pp. 27–35, Jul. 2023, doi: 10.35307/saltel.v6i2.111.
N. A. Haqimi and R. T. Kusuma, “Timeline reminder system bot and telegram assistant chatbot for a university student and lecturer,” J. Soft Comput. Explor., vol. 4, no. 4, pp. 186–194, Nov. 2023, doi: 10.52465/joscex.v4i4.221.