Developing a classification system for brain tumors using the ResNet152V2 CNN model architecture

Main Article Content

Syahruu Siyammu Rhomadhon
Diah Rahayu Ningtias

Abstract

According to The American Cancer Society, in 2021 there were 24,530 cases of brain and nervous system tumors. The National Cancer Institute reports that there are approximately 4.4 new cases of brain tumors per 100,000 men and women per year. Brain tumors can be detected using magnetic resonance imaging (MRI), a scanning tool that uses a magnetic field and a computer to record brain images and is able to provide clear visualization of differences in soft tissue such as white matter and gray matter. However, this cannot be done optimally because it still relies on manual analysis, so it cannot classify brain tumor types on larger datasets with the potential for error and a low level of accuracy. To accurately determine the type of brain tumor, a better classification method is needed. The aim of this study is to determine the accuracy of brain tumor calcification using the deep learning model. In this study, the classification of brain tumor types was carried out using the ResNet152V2 convolutional neural network (CNN) model which has a depth of 152 layers. The dataset used in this study was 7,023 MRI images of brain tumors consisting of 1,645 meningiomas, 1,621 gliomas, 1,757 pituitary and 2,000 normal. Research results show an accuracy value of 94.44%, so it can be concluded that the ResNet152V2 model performs well in classifying brain tumor images and can be used as a medium for physicians to more accurately diagnose brain tumor patients more accurately.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
S. S. Rhomadhon and D. R. Ningtias, “Developing a classification system for brain tumors using the ResNet152V2 CNN model architecture”, J. Soft Comput. Explor., vol. 5, no. 2, pp. 173-182, Jun. 2024.
Section
Articles

References

A. Digdoyo, T. Surawan, A. S. B. Karno, D. R. Irawati, and Y. Effendi, “Deteksi Tumor Otak Dengan CNN Resnet-152,” J. Teknol., vol. 9, no. 2, pp. 23–31, May 2022, doi: 10.31479/jtek.v9i2.128.

F. M. Onyije et al., “Risk factors for childhood brain tumours: A systematic review and meta-analysis of observational studies from 1976 to 2022,” Cancer Epidemiol., vol. 88, p. 102510, Feb. 2024, doi: 10.1016/j.canep.2023.102510.

M. A. Talukder et al., “An efficient deep learning model to categorize brain tumor using reconstruction and fine-tuning,” Expert Syst. Appl., vol. 230, p. 120534, Nov. 2023, doi: 10.1016/j.eswa.2023.120534.

K. N. Deeksha, D. M, A. V Girish, A. S. Bhat, and L. H, “Classification of Brain Tumor and its types using Convolutional Neural Network,” in 2020 IEEE International Conference for Innovation in Technology (INOCON), IEEE, Nov. 2020, pp. 1–6. doi: 10.1109/INOCON50539.2020.9298306.

T. Saputra and M. E. Al-Rivan, “Analisis Performa ResNet-152 dan AlexNet dalam Klasifikasi Jenis Kanker Kulit,” STRING (Satuan Tulisan Ris. dan Inov. Teknol., vol. 8, no. 1, p. 75, Aug. 2023, doi: 10.30998/string.v8i1.16464.

I. A. Kandhro et al., “Performance evaluation of E-VGG19 model: Enhancing real-time skin cancer detection and classification,” Heliyon, vol. 10, no. 10, p. e31488, May 2024, doi: 10.1016/j.heliyon.2024.e31488.

A. Ridhovan and A. Suharso, “PENERAPAN METODE RESIDUAL NETWORK (RESNET) DALAM KLASIFIKASI PENYAKIT PADA DAUN GANDUM,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 7, no. 1, pp. 58–65, Feb. 2022, doi: 10.29100/jipi.v7i1.2410.

D. R. Ningtias, M. Rofi’i, and B. A. Pramudita, “Utilization of Spiking Neural Network (SNN) in X-Ray Image for Lung Disease Detection,” J. INFORMATICS Telecommun. Eng., vol. 7, no. 2, pp. 523–533, Jan. 2024, doi: 10.31289/jite.v7i2.10671.

A. Dardzińska-Głębocka and M. Zdrodowska, “Analysis children with disabilities self-care problems based on selected data mining techniques,” Procedia Comput. Sci., vol. 192, pp. 2854–2862, 2021, doi: 10.1016/j.procs.2021.09.056.

M. N. Winnarto, M. Mailasari, and A. Purnamawati, “KLASIFIKASI JENIS TUMOR OTAK MENGGUNAKAN ARSITEKTURE MOBILENET V2,” J. SIMETRIS, vol. 13, no. 2, pp. 1–12, 2022.

M. N. M. Hakim, A. B. Nugroho, and A. E. Minarno, “Prediksi Tumor Otak Menggunakan Metode Convolutional Neural Network,” Inform. Mulawarman J. Ilm. Ilmu Komput., vol. 17, no. 1, p. 48, Jul. 2023, doi: 10.30872/jim.v17i1.5246.

K. Amalia, R. Magdalena, and S. Saidah, “Klasifikasi Penyakit Tumor Otak Pada Citra Mri Menggunakan Metode CNN Dengan Arsitektur Alexnet,” e-Proceeding Eng., vol. 8, no. 6, pp. 3247–3254, 2022.

B. Li, “Hearing loss classification via AlexNet and extreme learning machine,” Int. J. Cogn. Comput. Eng., vol. 2, pp. 144–153, Jun. 2021, doi: 10.1016/j.ijcce.2021.09.002.

Tri Suhartono and Diah Rahayu Ningtias, “Classification of Pneumonia Disease Based on Web Application Using Convolutional Neural Networks (CNNs),” Int. J. Technol. Educ. Res., vol. 1, no. 01 SE-Articles, pp. 129–140, Mar. 2023, [Online]. Available: https://e-journal.citakonsultindo.or.id/index.php/IJETER/article/view/267

M. Neshat, M. Ahmed, H. Askari, M. Thilakaratne, and S. Mirjalili, “Hybrid Inception Architecture with Residual Connection: Fine-tuned Inception-ResNet Deep Learning Model for Lung Inflammation Diagnosis from Chest Radiographs,” Procedia Comput. Sci., vol. 235, pp. 1841–1850, 2024, doi: 10.1016/j.procs.2024.04.175.

B. O. Olorunfemi, N. I. Nwulu, O. A. Adebo, and K. A. Kavadias, “Advancements in machine visions for fruit sorting and grading: A bibliometric analysis, systematic review, and future research directions,” J. Agric. Food Res., vol. 16, p. 101154, Jun. 2024, doi: 10.1016/j.jafr.2024.101154.

Q. Xu, Z. Ma, N. HE, and W. Duan, “DCSAU-Net: A deeper and more compact split-attention U-Net for medical image segmentation,” Comput. Biol. Med., vol. 154, p. 106626, Mar. 2023, doi: 10.1016/j.compbiomed.2023.106626.

T. Islam, M. S. Hafiz, J. R. Jim, M. M. Kabir, and M. F. Mridha, “A systematic review of deep learning data augmentation in medical imaging: Recent advances and future research directions,” Healthc. Anal., vol. 5, p. 100340, Jun. 2024, doi: 10.1016/j.health.2024.100340.

N. T. Le et al., “Deep Learning Approach for Age-related Macular Degeneration Detection Using Retinal Images: Efficacy Evaluation of Different Deep Learning Models,” Egypt. Informatics J., vol. 24, no. 4, p. 100402, Dec. 2023, doi: 10.1016/j.eij.2023.100402.

K. Mani and H. Rajaguru, “A framework for performance enhancement of classifiers in detection of prostate cancer from microarray gene,” Heliyon, vol. 10, no. 9, p. e29630, May 2024, doi: 10.1016/j.heliyon.2024.e29630.

A. H. Uddin, Y.-L. Chen, M. R. Akter, C. S. Ku, J. Yang, and L. Y. Por, “Colon and lung cancer classification from multi-modal images using resilient and efficient neural network architectures,” Heliyon, vol. 10, no. 9, p. e30625, May 2024, doi: 10.1016/j.heliyon.2024.e30625.

O. G. Ajayi and J. Ashi, “Effect of varying training epochs of a Faster Region-Based Convolutional Neural Network on the Accuracy of an Automatic Weed Classification Scheme,” Smart Agric. Technol., vol. 3, p. 100128, 2023.

F. Feng, Y.-B. Li, Z.-H. Chen, W.-T. Wu, J.-Z. Peng, and M. Mei, “Graph convolution network-based surrogate model for natural convection in annuli,” Case Stud. Therm. Eng., vol. 57, p. 104330, May 2024, doi: 10.1016/j.csite.2024.104330.

Abstract viewed = 195 times