Squeeze-and-Excitation networks and attention mechanism in automatic detection of coffee leaf diseases based on images

Main Article Content

Muhammad Izza Iqbal
Donny Avianto

Abstract

This research examines the effectiveness of Squeeze-and-Excitation Networks (SENet) combined with Attention Mechanism for automated detection of coffee leaf diseases. The integration of SENet and Attention Mechanism presents a promising technological opportunity as SENet has proven effective in improving CNN performance by modeling channel interdependencies, while Attention Mechanism enables focused feature extraction on crucial leaf areas - a combination that remains underexplored in coffee leaf disease detection. Using a combination of three datasets: Coffee Leaf Diseases, Disease and Pest in Coffee Leaves, and RoCoLe.Original, comprising 3,177 coffee leaf images divided into four classes (Healthy, Miner, Phoma, and Rust), this study compares the performance of SENet against other deep learning architectures such as InceptionV3, ResNet101V2, and MobileNet. Experiments were conducted with variations in epochs (15 and 30), three data split ratios, and three optimizer types. Results demonstrate that SENet with Attention mechanism performs, achieving a peak accuracy of 96% at 30 epochs with an 80:20 data ratio and RMSprop optimizer. InceptionV3 and MobileNet showed competitive performance with 93% accuracy, while ResNet101V2 achieved 81%. Class-wise analysis reveals SENet's proficiency in detecting various coffee leaf diseases, with F1-scores 91% for all classes.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
M. I. Iqbal and D. Avianto, “Squeeze-and-Excitation networks and attention mechanism in automatic detection of coffee leaf diseases based on images”, J. Soft Comput. Explor., vol. 5, no. 4, pp. 320-331, Dec. 2024.
Section
Articles

References

C. P. Ginting and F. Kartiasih, “Analisi Ekspor Kopi Indonesia Ke Negara-Negara ASEAN,” J. Ilm. Ekon. dan Bisnis, vol. 16, pp. 143–157, Sep. 2019, doi: 10.31849/jieb.v16i2.2922.

D. Irfansyah and others, “Arsitektur Convolutional Neural Network (CNN) Alexnet Untuk Klasifikasi Hama Pada Citra Daun Tanaman Kopi,” vol. 6, no. 2, 2021.

L. X. B. Sorte, C. T. Ferraz, F. Fambrini, R. D. R. Goulart, and J. H. Saito, “Coffee leaf disease recognition based on deep learning and texture attributes,” in Procedia Computer Science, Elsevier B.V., 2019, pp. 135–144. doi: 10.1016/j.procs.2019.09.168.

J. Jepkoech, D. M. Mugo, B. K. Kenduiywo, and E. C. Too, “Arabica coffee leaf images dataset for coffee leaf disease detection and classification,” Data Br., vol. 36, Jun. 2021, doi: 10.1016/j.dib.2021.107142.

M. I. Rosadi, L. Hakim, and M. F. A., “Classification of Coffee Leaf Diseases using the Convolutional Neural Network (CNN) EfficientNet Model,” Conf. Ser., vol. 4, no. 1, pp. 58–69, Dec. 2023, doi: 10.34306/conferenceseries.v4i1.627.

D. Novtahaning, H. A. Shah, and J. M. Kang, “Deep Learning Ensemble-Based Automated and High-Performing Recognition of Coffee Leaf Disease,” Agric., vol. 12, no. 11, Nov. 2022, doi: 10.3390/agriculture12111909.

G. Wan and L. Yao, “LMFRNet: A Lightweight Convolutional Neural Network Model for Image Analysis,” Electron., vol. 13, no. 1, Jan. 2024, doi: 10.3390/electronics13010129.

R. Archana and P. S. E. Jeevaraj, “Deep learning models for digital image processing: a review,” Artif Intell Rev, vol. 57, no. 1, Jan. 2024, doi: 10.1007/s10462-023-10631-z.

C. Wen and others, “Recognition of mulberry leaf diseases based on multi-scale residual network fusion SENet,” PLoS One, vol. 19, no. 2, Feb. 2024, doi: 10.1371/journal.pone.0298700.

Y. Zhao, C. Sun, X. Xu, and J. Chen, “RIC-Net: A plant disease classification model based on the fusion of Inception and residual structure and embedded attention mechanism,” Comput Electron Agric, vol. 193, p. 106644, Feb. 2022, doi: 10.1016/J.COMPAG.2021.106644.

J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, “Squeeze-and-Excitation Networks,” ArXiv, Sep. 2019.

W. Yang, Y. Yuan, D. Zhang, L. Zheng, and F. Nie, “An Effective Image Classification Method for Plant Diseases with Improved Channel Attention Mechanism aECAnet Based on Deep Learning,” Symmetry (Basel), vol. 16, no. 4, Apr. 2024, doi: 10.3390/sym16040451.

X. Zhang, D. Li, X. Liu, T. Sun, X. Lin, and Z. Ren, “Research of segmentation recognition of small disease spots on apple leaves based on hybrid loss function and CBAM,” Front Plant Sci, vol. 14, 2023, doi: 10.3389/fpls.2023.1175027.

P. Alirezazadeh, M. Schirrmann, and F. Stolzenburg, “Improving Deep Learning-based Plant Disease Classification with Attention Mechanism,” Gesunde Pflanz., vol. 75, no. 1, pp. 49–59, Feb. 2023, doi: 10.1007/s10343-022-00796-y.

S. K. Wildah, A. Latif, A. Mustopa, S. Suharyanto, M. S. Maulana, and A. Sasongko, “Klasifikasi Penyakit Daun Kopi Menggunakan Kombinasi Haralick, Color Histogram dan Random Forest,” J. Sist. dan Teknol. Inf., vol. 11, no. 1, p. 35, Jan. 2023, doi: 10.26418/justin.v11i1.60985.

A. I. Saputra, I. Weni, and U. Khaira, “Implementasi Metode Convolutional Neural Network Untuk Deteksi Penyakit Pada Tanaman Kopi Arabika Melalui Citra Daun Berbasis Android,” Decod. J. Pendidik. Teknol. Inf., vol. 4, no. 1, pp. 41–51, Oct. 2023, doi: 10.51454/decode.v4i1.231.

I. Awaludin and others, “Analisis Kinerja ResNet-50 dalam Klasifikasi Penyakit pada Daun Kopi Robusta,” J. Inform., vol. 9, no. 2, 2022.

P. Pragy, V. Sharma, and V. Sharma, “Senet CNN Based Tomato Leaf Disease Detection,” in International Journal of Innovative Technology and Exploring Engineering, Sep. 2019, pp. 773–777. doi: 10.35940/ijitee.K1452.0981119.

B. Wahyuningtyas, I. I. Tritoasmoro, and N. Ibrahim, “Identifikasi Penyakit Pada Daun Kopi Menggunakan Metode Local Binary Pattern Dan Random Forest,” e-Proceeding Eng., vol. 8, no. 6, 2022.

S. Sheila, I. P. Sari, A. B. Saputra, M. K. Anwar, and F. R. Pujianto, “Detection of Diseases in Rice Leaves Based on Image Processing Using the Convolutional Neural Network (CNN) Method,” J. Multimed. Netw. INFORMATICS, vol. 9, no. 1, pp. 27–34, Apr. 2023.

A. Gheorghiu, I.-M. Tăiatu, D.-C. Cercel, I. Marin, and F. Pop, “Evaluating Data Augmentation Techniques for Coffee Leaf Disease Classification,” ArXiv, Jan. 2024.

A. Fuadi and others, “Perbandingan Arsitektur MobileNet dan NasNetMobile untuk Klasifikasi Penyakit pada Citra Daun Kentang,” JIPI, vol. 7, no. 3, Sep. 2022, doi: 10.29100/jipi.v7i3.3026.

S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “CBAM: Convolutional Block Attention Module,” CoRR, vol. abs/1807.06521, 2018.

M. A. Muslim et al., “New model combination meta-learner to improve accuracy prediction P2P lending with stacking ensemble learning,” Intell. Syst. with Appl., vol. 18, p. 200204, May 2023, doi: 10.1016/j.iswa.2023.200204.

Y. Fu, L. Guo, and F. Huang, “A lightweight CNN model for pepper leaf disease recognition in a human palm background,” Heliyon, vol. 10, no. 12, Jun. 2024, doi: 10.1016/j.heliyon.2024.e33447.

A. G. Argho, M. M. S. Maswood, M. I. Mahmood, and N. Mondol, “EfficientCovNet: A CNN-based approach to detect various pulmonary diseases including COVID-19 using modified EfficientNet,” Intell. Syst. with Appl., vol. 21, Mar. 2024, doi: 10.1016/j.iswa.2023.200315.

D. K. Saha, A. M. Joy, and A. Majumder, “YoTransViT: A transformer and CNN method for predicting and classifying skin diseases using segmentation techniques,” Inf. Med Unlocked, vol. 47, Jan. 2024, doi: 10.1016/j.imu.2024.101495.

C. Ashwini and V. Sellam, “An optimal model for identification and classification of corn leaf disease using hybrid 3D-CNN and LSTM,” Biomed Signal Process Control, vol. 92, p. 106089, Jun. 2024, doi: 10.1016/J.BSPC.2024.106089.

N. Parashar and P. Johri, “Deep Learning for Cotton Leaf Disease Detection,” in 2024 2nd International Conference on Device Intelligence, Computing and Communication Technologies (DICCT), Dehradun, India, 2024, pp. 158–162. doi: 10.1109/DICCT61038.2024.10533021.

Abstract viewed = 140 times