Comparison of clustering analysis of K-means, K-medoids, and fuzzy C-means methods: case study of school accreditation in west java

Main Article Content

Yunia Hasnataeni
M Rizky Nurhambali
Rizky Ardhani
Siti Hafsah
Agus M Soleh

Abstract

This research aims to analyze school accreditation data in West Java using clustering methods: K-Means, K-Medoids, and Fuzzy C-Means, to identify patterns and groups of schools based on similar characteristics. K-Means, known for its simplicity, suggests an optimal two-cluster solution based on silhouette values but employs three clusters for detailed analysis. K-Medoids, noted for its robustness against outliers, achieves the best clustering with a lowest Davies-Bouldin Index (DBI) of 0.8 and the highest Silhouette Information (SI) value of 0.46. Fuzzy C-Means, which assigns membership degrees to each data point across clusters, performs reasonably well with a DBI of 0.87 and an SI value of 0.40, while K-Means shows the highest DBI of 0.9 and the lowest SI value of 0.39. The findings highlight K-Medoids as the superior method for clustering. Regions with lower educational quality, such as Bekasi and Cianjur regions, require priority interventions, whereas areas with better quality, like Bandung and Bekasi regions, can serve as models. Data-driven approaches, inter-regional collaboration, and continuous monitoring and evaluation are recommended to optimize educational policies and enhance overall educational quality in West Java.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
Y. Hasnataeni, M. R. . Nurhambali, R. . Ardhani, S. . Hafsah, and A. M. Soleh, “Comparison of clustering analysis of K-means, K-medoids, and fuzzy C-means methods: case study of school accreditation in west java”, J. Soft Comput. Explor., vol. 6, no. 2, pp. 79-88, Jun. 2025.
Section
Articles

References

A. Aditya, I. Jovian, and B. N. Sari, “Implementasi K-Means Clustering Ujian Nasional Sekolah Menengah Pertama di Indonesia Tahun 2018/2019,” J. MEDIA Inform. BUDIDARMA, vol. 4, no. 1, p. 51, Jan. 2020, doi: 10.30865/mib.v4i1.1784.

A. F. Mohamed Nafuri, N. S. Sani, N. F. A. Zainudin, A. H. A. Rahman, and M. Aliff, “Clustering Analysis for Classifying Student Academic Performance in Higher Education,” Appl. Sci., vol. 12, no. 19, p. 9467, Sep. 2022, doi: 10.3390/app12199467.

Annisa Nadaa Shabrina, M. Afdal, and Siti Monalisa, “Comparison Of K-Means, K-Medoids, and Fuzzy C-Means Algorithms for Clustering Drug User’s Addiction Levels,” J. Sist. Cerdas, vol. 6, no. 2, pp. 113–122, Aug. 2023, doi: 10.37396/jsc.v6i2.313.

M. A. Syakur, B. K. Khotimah, E. M. S. Rochman, and B. D. Satoto, “Integration K-Means Clustering Method and Elbow Method For Identification of The Best Customer Profile Cluster,” IOP Conf. Ser. Mater. Sci. Eng., vol. 336, p. 012017, Apr. 2018, doi: 10.1088/1757-899X/336/1/012017.

M. E. Celebi, H. A. Kingravi, and P. A. Vela, “A comparative study of efficient initialization methods for the k-means clustering algorithm,” Expert Syst. Appl., vol. 40, no. 1, pp. 200–210, Jan. 2013, doi: 10.1016/j.eswa.2012.07.021.

E. Herman, K.-E. Zsido, and V. Fenyves, “Cluster Analysis with K-Mean versus K-Medoid in Financial Performance Evaluation,” Appl. Sci., vol. 12, no. 16, p. 7985, Aug. 2022, doi: 10.3390/app12167985.

E. Schubert and P. J. Rousseeuw, “Fast and Eager k-Medoids Clustering: O(k) Runtime Improvement of the PAM, CLARA, and CLARANS Algorithms,” Inf. Syst., vol. 101, p. 101804, Nov. 2021, doi: 10.1016/j.is.2021.101804.

S. Sarbaini, W. Saputri, Nazaruddin, and F. Muttakin, “Cluster Analysis Menggunakan Algoritma Fuzzy K-Means Untuk Tingkat Pengangguran Di Provinsi Riau,” J. Teknol. dan Manaj. Ind. Terap., vol. 1, no. 2, pp. 78–84, Jun. 2022, doi: 10.55826/tmit.v1iII.30.

M. A. E. Rahadianto, A. D. Sakti, and K. Wikantika, “Evaluasi Kualitas Infrastruktur Fasilitas Pendidikan Dasar di Provinsi Jawa Barat Indonesia Menggunakan Pendekatan Berbasis Model Multi-Hazard dan Aksesibilitas,” in Seminar Nasional Geomatika 2020: Informasi Geospasial untuk Inovasi Percepatan Pembangunan Berkelanjutan, 2020.

S. A. Nurfatimah, S. Hasna, and D. Rostika, “Membangun Kualitas Pendidikan di Indonesia dalam Mewujudkan Program Sustainable Development Goals (SDGs),” J. Basicedu, vol. 6, no. 4, pp. 6145–6154, May 2022, doi: 10.31004/basicedu.v6i4.3183.

C. Mongi and C. Montolalu, “Penggerombolan Sekolah Menengah Atas Berdasarkan Nilai Ujian Nasional Di Kota Manado,” d’CARTESIAN, vol. 6, no. 2, p. 80, Aug. 2017, doi: 10.35799/dc.6.2.2017.17969.

W. M. P. Dhuhita, “Clustering menggunakan metode K-Means untuk menentukan status gizi balita,” J. Inform., vol. 15, no. 2, 2015.

A. A. Harahap, M. Raihan, N. Amani, and P. R. Andini, “Comparison of Unsupervised Learning Techniques for Clustering Data on the Number of Villages in Indonesia,” in SENTIMAS: Seminar Nasional Penelitian dan Pengabdian Masyarakat, 2023, pp. 163–170.

S. Nurlaela, A. Primajaya, and T. N. Padilah, “Algoritma K-Medoids Untuk Clustering Penyakit Maag Di Kabupaten Karawang,” INFORMATIKA, vol. 12, no. 2, 2020.

D. L. Rahakbauw, V. Y. I. Ilwaru, and M. H. Hahury, “IMPLEMENTASI FUZZY C-MEANS CLUSTERING DALAM PENENTUAN BEASISWA,” BAREKENG J. Ilmu Mat. dan Terap., vol. 11, no. 1, pp. 1–12, Mar. 2017, doi: 10.30598/barekengvol11iss1pp1-12.

R. D. L. N. Karisma, T. S. Arinda, H. Widayani, and A. Kusumastuti, “Clustering of COVID-19 Provinces in Indonesia Using Fuzzy Means Cluster Methods,” 2023, pp. 394–406. doi: 10.2991/978-94-6463-148-7_39.

M. Shutaywi and N. N. Kachouie, “Silhouette Analysis for Performance Evaluation in Machine Learning with Applications to Clustering,” Entropy, vol. 23, no. 6, p. 759, Jun. 2021, doi: 10.3390/e23060759.

Abstract viewed = 141 times