Sound detection of gamelan musical instruments using teachable machine

Main Article Content

Yessi Yunitasari
Moch Yusuf Asyhari
Inung Diah Kurniawati
Latjuba Sofyana STT

Abstract

Gamelan is an instrument of musical expression that has an aesthetic function related to social, moral, and spiritual values. Gamelan consists of a variety of musical instruments that have a unique sound. In this study, the sound detection of nine gamelan musical instruments was carried out using a teachable machine. The gamelan musical instruments detected included gong, kenong, saron, bonang, gambang, kendang, flute, siter, and rebab. The algorithm used is CNN. The CNN algorithm has a fairly good performance for the sound detection process. The test results of the built model show an "acc" value of 25 ranging from 0.99 to 1, which indicates that the model achieves an accuracy rate of 99% to 100% on the training dataset. At the same time, "test accuracy" refers to a measure of the model's effectiveness in predicting data it has not encountered during training. The "test accuracy" score varied from 0. 83, which shows that the validation data has an accuracy of 83%.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
Y. Yunitasari, M. Y. Asyhari, I. D. Kurniawati, and L. S. STT, “Sound detection of gamelan musical instruments using teachable machine”, J. Soft Comput. Explor., vol. 6, no. 2, pp. 89-98, Jun. 2025.
Section
Articles

References

E. Ariyanto and F. S. Hananto, “Identifikasi Dan Aplikasi Pengenalan Spektrum Bunyi Gamelan Menggunakan Jaringan Syaraf Tiruan Pada Matlab,” J. Neutrino, vol. 7, no. 1, p. 7, 2014, doi: 10.18860/neu.v7i1.2633.

M. Jebbar, A. Maizate, and R. A. Abdelouahid, “Moroccan’s Arabic Speech Training And Deploying Machine Learning Models with Teachable Machine,” Procedia Comput. Sci., vol. 203, pp. 801–806, 2022, doi: 10.1016/j.procs.2022.07.120.

E. A. U. Malahina, “Teachable Machine: Deteksi Dialek Sumba Timur (Kambera) Menggunakan Layanan Open Source,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 12, no. 4, pp. 280–286, 2023, doi: 10.22146/jnteti.v12i4.8174.

H. Kheddar, M. Hemis, and Y. Himeur, “Automatic speech recognition using advanced deep learning approaches: A survey,” Inf. Fusion, vol. 109, 2024, doi: 10.1016/j.inffus.2024.102422.

D. T. Susetianingtias and E. Patriya, “Identifikasi Fitur Suara Menggunakan Model Convolutional Neural Network ( CNN ) pada Speech-to-Text ( STT ),” vol. 4, no. 3, pp. 809–820, 2024.

T. Thomas Leonid and R. Jayaparvathy, “Classification of Elephant Sounds Using Parallel Convolutional Neural Network,” Intell. Autom. Soft Comput., vol. 32, no. 3, pp. 1415–1426, 2022, doi: 10.32604/IASC.2022.021939.

Q. B. Diep, H. Y. Phan, and T. C. Truong, “Crossmixed convolutional neural network for digital speech recognition,” PLoS One, vol. 19, no. 4, pp. 1–22, 2024, doi: 10.1371/journal.pone.0302394.

W. Ibrahim, H. Candra, and H. Isyanto, “Voice Recognition Security Reliability Analysis Using Deep Learning Convolutional Neural Network Algorithm,” J. Electr. Technol. UMY, vol. 6, no. 1, pp. 1–11, 2022, doi: 10.18196/jet.v6i1.14281.

T. S. Prihartini and P. N. Andono, “Deteksi Tepi Dengan Metode Laplacian of Gaussian Pada Citra Daun Tanaman Kopi,” pp. 1–5, 2017, [Online]. Available: http://eprints.dinus.ac.id/15312/1/jurnal_15354.pdf

A. R. Hermawan, “276-1002-1-Pb,” vol. 6, no. 2, pp. 0–6, 2022.

R. Chen, A. Ghobakhlou, and A. Narayanan, “Interpreting CNN models for musical instrument recognition using multi-spectrogram heatmap analysis: a preliminary study,” Front. Artif. Intell., vol. 7, no. December, pp. 1–14, 2024, doi: 10.3389/frai.2024.1499913.

G. A. V. M. Giri and M. L. Radhitya, “Musical Instrument Classification using Audio Features and Convolutional Neural Network,” J. Appl. Informatics Comput., vol. 8, no. 1, pp. 226–234, 2024, doi: 10.30871/jaic.v8i1.8058.

V. Chhipa and R. Poonia, “Teachable machine : A web based machine learning tool for user voice biometric authentication system,” J. Discret. Math. Sci. Cryptogr., vol. 27, no. 4, pp. 1345–1355, 2024, doi: 10.47974/JDMSC-1989.

E. A. U. Malahina, R. P. Hadjon, and F. Y. Bisilisin, “Teachable Machine: Real-Time Attendance of Students Based on Open Source System,” IJICS (International J. Informatics Comput. Sci., vol. 6, no. 3, p. 140, 2022, doi: 10.30865/ijics.v6i3.4928.

K. Hastuti and A. M. Syarifzh, “Identifikasi Fitur Melodi Dalam Musik Gamelan Berdasarkan Hubungan Asosiasi Antar-Notasi,” Semin. Nas. Sist. Inf. Indones., pp. 47–54, 2016.

I. M. Nurrizqy, B. H. Prasetio, and R. R. Mardi Putri, “Sistem Kontrol Perangkat Inframerah Menggunakan Speech Recognition dengan Spectrogram dan Convolutional Neural Network Berbasis Mikrokontroler,” J. Teknol. Inf. dan Ilmu Komput., vol. 10, no. 5, pp. 955–962, 2023, doi: 10.25126/jtiik.20231056909.

N. Zhang, “Oral Voice Recognition System Based on Deep Neural Network Posteriori Probability Algorithm,” Procedia Comput. Sci., vol. 243, pp. 216–223, 2024, doi: 10.1016/j.procs.2024.09.028.

S. Dwijayanti, A. Y. Putri, and B. Y. Suprapto, “Speaker Identification Using a Convolutional Neural Network,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 1, pp. 140–145, 2022, doi: 10.29207/resti.v6i1.3795.

berto nadaek & imam saputra tuminar butar butar, “Implementasi Metode Convolutional Neural Network Untuk Identifikasi Pola Aksara Batak,” Tumiar Butar-Butar | BIMASATI, vol. 1, no. 2, pp. 49–53, 2022.

N. D. Miranda, L. Novamizanti, and S. Rizal, “Convolutional Neural Network Pada Klasifikasi Sidik Jari Menggunakan Resnet-50,” J. Tek. Inform., vol. 1, no. 2, pp. 61–68, 2020, doi: 10.20884/1.jutif.2020.1.2.18.

Abstract viewed = 98 times