Prediction of Hospital Intesive Patients Using Neural Network Algorithm
Main Article Content
Abstract
This study aims to predict whether the patient deserves to be inpatient or outpatient by comparing several machine learning techniques, namely, logistic regression, decision tree, neural network, random forest, gradient boosting. The research method uses three stages of research, namely data collection, data preprocessing, and data modeling. Implementation of program code using google colab and python programming language. The dataset used as the research sample is Electronic Health Record Predicting data. Based on the accuracy results generated in this study, the use of the Neural Network machine learning algorithm to predict hospitalization decisions for patients has proven to be a machine learning algorithm that has the highest accuracy rate reaching 74, 47% compared to other comparison machine learning algorithms, namely logistic regression, decision tree, neural network, random forest, gradient boosting.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
A. Royani, “Lingkungan kerja dan kompentensi perekam medis terhadap kualitas sistem rekam medis di rs al islam bandung,” J. Teras Kesehat., vol. 2, no. 1, pp. 1–13, 2019.
Ditjen Layanan Kesehatan, “Grafik rumah sakit by kelas,” http://sirs.yankes.kemkes.go.id/fo/, 2020.
L. He, S. C. Madathil, G. Servis, and M. T. Khasawneh, “Neural network-based multi-task learning for inpatient flow classification and length of stay prediction,” Appl. Soft Comput., vol. 108, 2021.
A. abdulaziz Mohsen, M. Alsurori, B. Aldobai, and G. Abdulaziz Mohsen, “New approach to medical diagnosis using artificial neural network and decision tree algorithm: application to dental diseases,” Int. J. Inf. Eng. Electron. Bus., vol. 11, no. 4, pp. 52–60, 2019.
C. H. Hsieh, R. H. Lu, N. H. Lee, W. T. Chiu, M. H. Hsu, and Y. C. Li, “Novel solutions for an old disease: Diagnosis of acute appendicitis with random forest, support vector machines, and artificial neural networks,” Surgery, vol. 149, no. 1, pp. 87–93, 2011.
H. Wang, C. Liu, and L. Deng, “Enhanced Prediction of Hot Spots at Protein-Protein Interfaces Using Extreme Gradient Boosting,” Sci. Rep., vol. 8, no. 1, pp. 1–13, 2018.
A. Beucher, A. B. Møller, and M. H. Greve, “Artificial neural networks and decision tree classification for predicting soil drainage classes in Denmark,” Geoderma, vol. 352, no. September 2017, pp. 351–359, 2019.
S. A. N. Alexandropoulos, S. B. Kotsiantis, and M. N. Vrahatis, “Data preprocessing in predictive data mining,” Knowl. Eng. Rev., vol. 34, 2019.
M. Sam’an and Y. N. Ifriza, “Performance comparison of support vector machine and gaussian naive bayes classifier for youtube spam comment detection,” J. Soft Comput. Explor., vol. 2, no. 2, pp. 93–98, 2021.
N. L. W. S. R. Ginantra, A. H. Arifah, F. N., Wijaya, R. S. Septarini, N. Ahmad, D. P. Y. Ardiana, and E. S. Negara, Data mining dan penerapan algoritma. Yayasan Kita Menulis, 2021.
I. G. A. Suciningsih, M. A. Hidayat, and R. A. Hapsari, “Comparation analysis of naïve bayes and decision tree C4.5 for caesarean section prediction,” J. Soft Comput. Explor., vol. 2, no. 1, pp. 46–52, 2021, doi: 10.52465/joscex.v2i1.25.
R. Ridwan, H. Lubis, and P. Kustanto, “Implementasi algoritma neural network dalam memprediksi tingkat kelulusan mahasiswa,” J. Media Inform. Budidarma, vol. 4, no. 2, pp. 286–293, 2020.
X. Yao et al., “Land use classification of the deep convolutional neural network method reducing the loss of spatial features,” Sensors, vol. 19, no. 12, p. 2792, 2019.
P. Kanani and M. Padole, “Deep learning to detect skin cancer using google colab,” Int. J. Eng. Adv. Technol. Regul. Issue, vol. 8, no. 6, pp. 2176–2183, 2019.
A. N. Syahrudin and T. Kurniawan, “Input dan output pada bahasa pemrograman python,” J. Dasar Pemrograman Python Stmik, vol. January, pp. 1–7, 2018.