Mask Detection System with Computer Vision-Based on CNN and YOLO Method Using Nvidia Jetson Nano
Main Article Content
Abstract
Health is an essential aspect of life. The World Health Organization (WHO) has officially declared the Corona Virus (Covid-19) a global pandemic that has spread to Indonesia. For preventive measures against Covid-19, the Indonesian government is trying to deal with the Covid-19 pandemic with 3M health protocol aimed at community activities, such as Memakai Masker (wearing masks), Mencuci Tangan (washing hands), and Menjaga Jarak (maintaining distance). In this study, software and hardware design was carried out to detect mask users and immediately warn violators who do not use masks automatically and can function automatically offline by utilizing digital image processing using NVIDIA Jetson Nano using the YOLO (You Only Look Once) method. The CNN YOLOv4-tiny model is chosen to obtain measurement results for mask user detection accuracy because it has a relatively minor computational value and is faster. The best camera detection angle is obtained at a vulnerable angle of 45O-90O or in the range of 90O-135O with value confidence that the average is 99.94% and the best accuracy is at a lux value greater than 70, and a minimum camera height of 1 meter and a maximum of 3 meters. Under conditions of lux 96 (bright), the maximum distance for detecting a face object is 12 meters, and the ability of the system to output a warning sound has been successfully integrated with a relay to run the mp3 module separately from the system, so as not to interfere with the Jetson Nano computation process and the model is successfully run on the Jetson Nano with an average computation of 13 frames per second.
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
D. Arianto and A. Sutrisno, “Kajian Antisipasi Pelayanan Kapal dan Barang di Pelabuhan Pada Masa Pandemi Covid–19,” J. Penelit. Transp. Laut, vol. 22, no. 2, pp. 97–110, 2020.
A. Tafrikhatin, “Penerapan Kran Otomatis Guna Pencegahan Covid-19 untuk Masjid Jami Al-Istiqomah di Kelurahan Setrojenar, Kecamatan Buluspesantren, Kabupaten Kebumen,” JURPIKAT (Jurnal Pengabdi. Kpd. Masyarakat), vol. 1, no. 2, pp. 48–59, 2020, doi: 10.37339/jurpikat.v1i2.306.
Y. Yuliana, “Corona virus diseases (Covid-19): Sebuah tinjauan literatur,” Wellness Heal. Mag., vol. 2, no. 1, pp. 187–192, 2020, doi: 10.30604/well.95212020.
N. R. Yunus and A. Rezki, “Kebijakan Pemberlakuan Lock Down Sebagai Antisipasi Penyebaran Corona Virus Covid-19,” SALAM J. Sos. dan Budaya Syar-i, vol. 7, no. 3, 2020, doi: 10.15408/sjsbs.v7i3.15083.
R. Jayapermana, A. Aradea, and N. I. Kurniati, “Implementation of Stacking Ensemble Classifier for Multi-class Classification of COVID-19 Vaccines Topics on Twitter,” Sci. J. Informatics, vol. 9, no. 1, pp. 8–15, 2022, doi: 10.15294/sji.v9i1.31648.
J. Jumanto, M. A. Muslim, Y. Dasril, and T. Mustaqim, “Accuracy of Malaysia Public Response to Economic Factors During the Covid-19 Pandemic Using Vader and Random Forest,” J. Inf. Syst. Explor. Res., vol. 1, no. 1, pp. 49–70, 2023.
F. Firman and S. Rahayu, “Pembelajaran Online di Tengah Pandemi Covid-19,” Indones. J. Educ. Sci., vol. 2, no. 2, pp. 81–89, 2020, doi: 10.31605/ijes.v2i2.659.
S. Mishra, S. Yadav, M. Aggarwal, Y. Sharma, and R. Muzayanah, “Developed an expert system for analysis of Covid-19 affected,” J. Soft Comput. Explor., vol. 4, no. 1, 2023.
“6_.”
W. Fang, L. Wang, and P. Ren, “Tinier-YOLO: A Real-Time Object Detection Method for Constrained Environments,” IEEE Access, vol. 8, pp. 1935–1944, 2020, doi: 10.1109/ACCESS.2019.2961959.
R. K. Chandana and A. C. Ramachandra, “Real time object detection system with YOLO and CNN models: A review,” arXiv Prepr. arXiv2208.00773, 2022.
S. Sakib, T. Tazrin, M. M. Fouda, Z. M. Fadlullah, and M. Guizani, “DL-CRC: deep learning-based chest radiograph classification for COVID-19 detection: a novel approach,” Ieee Access, vol. 8, pp. 171575–171589, 2020.
J. Redmon, A. F. ön baskı ArXiv:1804.02767, and U. 2018, “Yolov3: Artımlı bir gelişme,” Arxiv.Org, 2018.
R. L. Galvez, A. A. Bandala, E. P. Dadios, R. R. P. Vicerra, and J. M. Z. Maningo, “Object detection using convolutional neural networks,” in TENCON 2018-2018 IEEE Region 10 Conference, 2018, pp. 2023–2027.
W. Zhiqiang and L. Jun, “A review of object detection based on convolutional neural network,” in 2017 36th Chinese control conference (CCC), 2017, pp. 11104–11109.
Y. Al-Smadi et al., “Early Wildfire Smoke Detection Using Different YOLO Models,” Machines, vol. 11, no. 2, p. 246, 2023.
D. G. Arwindo, E. Y. Puspaningrum, and Y. V. Via, “Identifikasi Penggunaan Masker Menggunakan Algoritma CNN YOLOv3-Tiny,” Pros. Semin. Nas. Inform. Bela Negara, vol. 1, pp. 153–159, 2020, doi: 10.33005/santika.v1i0.41.
D. M. Montserrat, Q. Lin, J. Allebach, and E. J. Delp, “Training object detection and recognition CNN models using data augmentation,” Electron. Imaging, vol. 2017, no. 10, pp. 27–36, 2017.
S. Wen, Y. Tao, and J. Chen, “Defect Detection for Mobile Phone Cases Based on Improved Yolo Model,” in 2021 7th International Conference on Computing and Artificial Intelligence, 2021, pp. 28–38.
P. Wu, H. Li, N. Zeng, and F. Li, “FMD-Yolo: An efficient face mask detection method for COVID-19 prevention and control in public,” Image Vis. Comput., vol. 117, p. 104341, 2022.
A. Kumar, A. Kalia, A. Sharma, and M. Kaushal, “A hybrid tiny YOLO v4-SPP module based improved face mask detection vision system,” J. Ambient Intell. Humaniz. Comput., pp. 1–14, 2021.
M. Inamdar and N. Mehendale, “Real-Time Face Mask Identification Using Facemasknet Deep Learning Network,” SSRN Electron. J., 2020, doi: 10.2139/ssrn.3663305.
A. K. Bhadani and A. Sinha, “A FACEMASK DETECTOR USING MACHINE LEARNING AND IMAGE PROCESSING Engineering Science and Technology , an International Journal A FACEMASK DETECTOR USING MACHINE LEARNING AND IMAGE PROCESSING,” Eng. Sci. Technol. an Int. J., no. November, pp. 1–8, 2020.
A. Wikarta, B. Suryo, and M. Khoirul Effendi, “Analisa Pengaruh Ukuran Testing Data dan Data Augmentation pada Tingkat Akurasi Deteksi Pemakaian Masker oleh Pengemudi Kendaraan menggunakan Deep Learning Influence,” Sent. 2020, no. November 2020, pp. 20–24, 2020.
A. Rahim, E. T. Luthfi, M. T. Informatika, and D. Learning, “Convolutional Neural Network Untuk Kalasifikasi,” pp. 109–115, 2019.