Recommendation of Yogyakarta tourism based on simple additive weighting under fuzziness

Main Article Content

Eko Yunanto Utomo

Abstract

For tourists who do not understand the situation or the desired tourist attraction, they can choose tour and travel services. Tour and travel provides a choice of tour packages with various variations. Determining the right tour and travel package and agency can benefit tourists, both in terms of financial and vacation quality. The data used in this study were obtained from several Tour and Travel agents. There are several variables used, namely the price of the package, the number of participants, and the number of facilities obtained. The method used in this study combines the Triangular Fuzzy Number (TFN) and the Simple Additive Weighting (SAW) method. The purpose of this study is to help tourists determine the most profitable or best packages. The results of this study obtained the best 2 packages recommended for tourists to choose.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
E. Y. Utomo, “Recommendation of Yogyakarta tourism based on simple additive weighting under fuzziness”, JOSCEX, vol. 2, no. 1, pp. 6-10, Mar. 2021.
Section
Articles

References

O. I. Nima Farokhi, Mozhdeh Vahid, Mehrbakhsh Nilashi, “A multi-criteria recommender system for tourism using fuzzy approach,” J. Soft Comput. Decis. Support Syst., vol. 3, no. 4, pp. 19–29, 2016.

M. O. Ilban and H. H. Yıldırım, “Determination of tourism activities of the world’s best tourism destinations using the multi-criteria decision-making method,” Cogent Soc. Sci., vol. 3, no. 1, 2017, doi: 10.1080/23311886.2017.1301763.

H. Alrasheed, A. Alzeer, A. Alhowimel, N. Shameri, and A. Althyabi, “A multi-level tourism destination recommender system,” Procedia Comput. Sci., vol. 170, pp. 333–340, 2020, doi: 10.1016/j.procs.2020.03.047.

R. Schegg and B. Stangl, “Special section on recommendations and analytics in tourism,” Inf. Technol. Tour., vol. 18, no. 1–4, 2018, doi: 10.1007/s40558-018-0109-8.

M. A. Maulana, M. Habib, A. Setyanto, and Oktavia, “Tourism Trend Mapping Based on Social Media Using SAW Algorithm,” J. Phys. Conf. Ser., vol. 1140, no. 1, 2018, doi: 10.1088/1742-6596/1140/1/012041.

P. I. Ciptayani, N. G. A. P. H. Saptarini, P. A. W. Santiary, and I. N. G. A. Astawa, “Decision support system for tourist destination using the combination of ahp and saw,” Proc. - 2nd East Indones. Conf. Comput. Inf. Technol. Internet Things Ind. EIConCIT 2018, pp. 271–275, 2018, doi: 10.1109/EIConCIT.2018.8878638.

E. Charou, K. Kabassi, A. Martinis, and M. Stefouli, “Integrating multimedia GIS technologies in a recommendation system for geotourism,” Smart Innov. Syst. Technol., vol. 3, pp. 63–74, 2010, doi: 10.1007/978-3-642-13396-1_3.

K. Piasecki, E. Roszkowska, and A. Łyczkowska-Hanćkowiak, “Simple additive weighting method equipped with fuzzy ranking of evaluated alternatives,” Symmetry (Basel)., vol. 11, no. 4, 2019, doi: 10.3390/sym11040482.

S. A. Pratiwi and H. Medyawati, “Design of supporting application for deciding the best mountain climbing ‘Hiking-Yuk!,’” Int. J. Eng. Technol. Manag. Res., vol. 7, no. 2, pp. 53–80, 2020, doi: 10.29121/ijetmr.v7.i2.2020.510.

M. Z. Rohman, Irwansyah, and W. E. Sari, “The medical facilities selection based on location-based services application using SAW and TOPSIS Algorithm,” J. Phys. Conf. Ser., vol. 1577, no. 1, 2020, doi: 10.1088/1742-6596/1577/1/012012.

H. A. Prihanditya, “The implementation of z-score normalization and boosting techniques to increase accuracy of c4.5 algorithm in diagnosing chronic kidney disease,” J. Soft Comput. Explor., vol. 5, no. 1, pp. 63–69, 2020.

A. Cahyapratama and R. Sarno, “Application of Analytic Hierarchy Process (AHP) and Simple Additive Weighting (SAW) methods in singer selection process,” 2018 Int. Conf. Inf. Commun. Technol. ICOIACT 2018, vol. 2018-Janua, pp. 234–239, 2018, doi: 10.1109/ICOIACT.2018.8350707.

M. Saputra, O. S. Sitompul, and P. Sihombing, “Comparison AHP and SAW to promotion of head major department SMK Muhammadiyah 04 Medan,” J. Phys. Conf. Ser., vol. 1007, no. 1, 2018, doi: 10.1088/1742-6596/1007/1/012034.

M. M. D. Widianta, T. Rizaldi, D. P. S. Setyohadi, and H. Y. Riskiawan, “Comparison of multi-criteria decision support methods (AHP, TOPSIS, SAW & PROMENTHEE) for employee placement,” J. Phys. Conf. Ser., vol. 953, no. 1, 2018, doi: 10.1088/1742-6596/953/1/012116.

I. Tahyudin, R. Rosyidi, A. S. Ahmar, and Haviluddin, “Comparison of the simple additive weighting (SAW) with the technique for others reference by similarity to ideal solution (TOPSIS) methods,” Int. J. Eng. Technol., vol. 7, no. 2, pp. 87–89, 2018, doi: 10.14419/ijet.v7i2.2.12740.

R. Simanaviciene and L. Ustinovichius, “Sensitivity analysis for multiple criteria decision-making methods: TOPSIS and SAW,” Procedia - Soc. Behav. Sci., vol. 2, no. 6, pp. 7743–7744, 2010, doi: 10.1016/j.sbspro.2010.05.207.

A. M. Yaakob and A. Gegov, “Interactive TOPSIS Based Group Decision Making Methodology Using Z-Numbers,” Int. J. Comput. Intell. Syst., vol. 9, no. 2, pp. 311–324, 2016, doi: 10.1080/18756891.2016.1150003.

D. J, Windarsyah, and R. R, “Decision support system for selecting banjar restaurant in banjarmasin city using simple additive weighting method,” J. K6, Educ. Manag., vol. 1, no. 4, pp. 35–43, 2018, doi: 10.11594/jk6em.01.04.05.

A. Göksu and Seniye Erdinç Kaya, “Ranking of tourist destinations with multi-criteria decision making methods in bosnia and herzegovina,” Econ. Rev. J. Econ. Bus., vol. 12, no. 2, pp. 91–103, 2014.

J. Seyedmohammadi, F. Sarmadian, A. A. Jafarzadeh, M. A. Ghorbani, and F. Shahbazi, “Application of SAW, TOPSIS and fuzzy TOPSIS models in cultivation priority planning for maize, rapeseed and soybean crops,” Geoderma, vol. 310, pp. 178–190, 2018, doi: 10.1016/j.geoderma.2017.09.012.

D. Aprilianto, “SVM Optimization with correlation feature selection based binary particle swarm optimization for diagnosis of chronic kidney disease,” J. Soft Comput. Explor., vol. 1, no.1 pp. 24–31, 2020.

A. R. Safitri and M. A. Muslim, “Improved accuracy of naive bayes classifier for determination of customer churn uses smote and genetic algorithms,” J. Soft Comput. Explor., vol. 1, no. 1, pp. 70–75, 2020.

R. H. Saputra and B. Prasetyo, “Improve the accuracy of c.5 algorithm using Particle Swarm Optimization (PSO) feature selection and bagging technique in breast cancer diagnosis,” J. Soft Comput. Explor., vol. 1. no.1. pp. 47–55, 2020.