A sentiment analysis of madura island tourism news using C4.5 algorithm

Main Article Content

Vina Angelina Savitri
Moh. Sa’id
Husni Husni
Arif Muntasa

Abstract

Over the past few years, the tourism sector has experienced significant growth in its contribution. The tourism potential on Madura Island is widespread across four regencies, namely Bangkalan, Sampang, Pamekasan, and Sumenep. This potential can be harnessed to support the local government's economy and the communities in the surrounding areas. This research aims to analyze the sentiment of Madura tourism news from online sources using the Decision Tree (C4.5) method. The data used in this study consist of 100 Madura tourism news articles collected from online news portals, which will be classified using the Decision Tree (C4.5) method. The test results show that this method has an average accuracy rate of 76.5% in 10 tests. The average accuracy results demonstrate that the use of the Decision Tree (C4.5) method in this research yields a sufficiently high accuracy level in the sentiment analysis of tourism news.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
V. A. Savitri, M. Sa’id, H. Husni, and A. Muntasa, “A sentiment analysis of madura island tourism news using C4.5 algorithm”, J. Soft Comput. Explor., vol. 5, no. 1, pp. 9-17, Mar. 2024.
Section
Articles

References

Badan Pusat Statistik, “Luas Wilayah,” Berita Resmi Statistik, 2023.

Badan Pusat Statistik, “Jumlah Penduduk,” Berita Resmi Statistik, 2023.

S. Arifin, “Digitalisasi Pariwisata Madura,” J. Komun., vol. 11, no. 1, p. 53, 2017, doi: 10.21107/ilkom.v11i1.2835.

G. Y. Masyhari Makhasi and S. D. Lupita Sari, “Strategi Branding Pariwisata Indonesia Untuk Pemasaran Mancanegara,” ETTISAL J. Commun., vol. 2, no. 2, p. 31, 2018, doi: 10.21111/ettisal.v2i2.1265.

A. Taufik, “Komparasi Algoritma Text Mining Untuk Klasifikasi Review Hotel,” J. Tek. Komput., vol. IV, no. 2, pp. 112–118, 2018, doi: 10.31294/jtk.v4i2.3461.

L. R. Putri, “Pengaruh Pariwisata Terhadap Peningkatan Kota Surakarta,” Cakra Wisata, vol. 21, no. 1, pp. 43–49, 2020.

J. Jumanto, M. A. Muslim, Y. Dasril, and T. Mustaqim, “Accuracy of Malaysia Public Response to Economic Factors During the Covid-19 Pandemic Using Vader and Random Forest,” J. Inf. Syst. Explor. Res., vol. 1, no. 1, pp. 49–70, 2022.

A. Falasari and M. A. Muslim, “Optimize Naïve Bayes Classifier Using Chi Square and Term Frequency Inverse Document Frequency For Amazon Review Sentiment Analysis,” J. Soft Comput. Explor., vol. 3, no. 1, pp. 31–36, Mar. 2022, doi: 10.52465/joscex.v3i1.68.

A. H. Nasrullah, “Implementasi Algoritma Decision Tree Untuk Klasifikasi Produk Laris,” J. Ilm. Ilmu Komput., vol. 7, no. 2, pp. 45–51, 2021, doi: 10.35329/jiik.v7i2.203.

M. Syarifuddin, “ANALISIS SENTIMEN OPINI PUBLIK TERHADAP EFEK PSBB PADA TWITTER DENGAN ALGORITMA DECISION TREE-KNN-NAÏVE BAYES,” vol. 15, no. 1, pp. 87–94, 2020, doi: 10.33480/inti.v15i1.1433.

A. I. Kadhim, “An Evaluation of Preprocessing Techniques for Text Classification,” Int. J. Comput. Sci. Inf. Secur., vol. 16, no. 6, pp. 22–32, 2018.

O. Somantri and D. Dairoh, “Analisis Sentimen Penilaian Tempat Tujuan Wisata Kota Tegal Berbasis Text Mining,” J. Edukasi dan Penelit. Inform., vol. 5, no. 2, p. 191, 2019, doi: 10.26418/jp.v5i2.32661.

V. A. Fitri, R. Andreswari, and M. A. Hasibuan, “Sentiment analysis of social media Twitter with case of Anti-LGBT campaign in Indonesia using Naïve Bayes, decision tree, and random forest algorithm,” Procedia Comput. Sci., vol. 161, pp. 765–772, 2019, doi: 10.1016/j.procs.2019.11.181.

S. Kannnan and V. Gurusamy, “Preprocessing Techniques for Text Mining,” Int. J. Comput. Sci. Commun. Networks, no. February 2015, pp. 7–16, 2014.

A. Murugan, H. Chelsey, and N. Thomas, Practical Text Analytics, vol. 37. 2019.

N. Yusliani, R. Primartha, and M. Diana, “Multiprocessing Stemming: A Case Study of Indonesian Stemming,” Int. J. Comput. Appl., vol. 182, no. 40, pp. 15–19, 2019, doi: 10.5120/ijca2019918476.

S.-W. Kim and J.-M. Gil, “Research paper classification systems based on TF-IDF and LDA schemes,” Human-centric Comput. Inf. Sci., vol. 9, no. 1, p. 30, Dec. 2019, doi: 10.1186/s13673-019-0192-7.

C. Tang, D. Wang, A. H. Tan, and C. Miao, “EEG-Based Emotion Recognition via Fast and Robust Feature Smoothing,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 10654 LNAI, no. November, pp. 83–92, 2017, doi: 10.1007/978-3-319-70772-3_8.

A. F. Mulyana, W. Puspita, and J. Jumanto, “Increased accuracy in predicting student academic performance using random forest classifier,” J. Student Res. Explor., vol. 1, no. 2, pp. 94–103, Jul. 2023, doi: 10.52465/josre.v1i2.169.

H. H. Patel and P. Prajapati, “Study and Analysis of Decision Tree Based Classification Algorithms,” Int. J. Comput. Sci. Eng., vol. 6, no. 10, pp. 74–78, 2018, doi: 10.26438/ijcse/v6i10.7478.

S. Wahyuni, “Implementation of Data Mining to Analyze Drug Cases Using C4.5 Decision Tree,” J. Phys. Conf. Ser., vol. 970, no. 1, 2018, doi: 10.1088/1742-6596/970/1/012030.

J. Mantik, N. Abdillah, and M. Ihksan, “Application of the C4 . 5 Algorithm for Classification of Medical Record Data At M . Djamil Hospital Based on the International Disease Code,” vol. 6, no. 36, pp. 576–581, 2022.

A. Nazir, A. Akhyar, Y. Yusra, and E. Budianita, “Toddler Nutritional Status Classification Using C4.5 and Particle Swarm Optimization,” Sci. J. Informatics, vol. 9, no. 1, pp. 32–41, May 2022, doi: 10.15294/sji.v9i1.33158.

D. Saputra, W. Irmayani, D. Purwaningtias, and J. Sidauruk, “A Comparative Analysis of C4.5 Classification Algorithm, Naïve Bayes and Support Vector Machine Based on Particle Swarm Optimization (PSO) for Heart Disease Prediction,” Int. J. Adv. Data Inf. Syst., vol. 2, no. 2, pp. 84–95, 2021, doi: 10.25008/ijadis.v2i2.1221.

Abstract viewed = 158 times