Light sensor optimization based on finger blood estimation and IoT-integrated

Main Article Content

Haris Imam Karim Fathurrahman
Bambang Robi'in
Sigit Suryo Saputro
Sudaryanti Sudaryanti

Abstract

Diabetes mellitus is a prevalent disease in society. This condition results from various causes, such as lifestyle choices or genetic predisposition. To prevent diabetes mellitus, blood glucose levels must be monitored periodically, and dietary consumption must be managed. Blood glucose monitoring still uses the incision or minimally invasive approach. This approach poses a risk of infection and damage. This study devised a method to optimize a light sensor to measure blood glucose levels. This approach uses sensor optimization and an integrated Internet of Things (IoT) technology. The research findings demonstrate that the use of the optimization strategy leads to increased consistency in sensor values, which may then be transmitted wirelessly through the IoT network. The research results demonstrate that using the optimization strategy leads to increased consistency in sensor values, which may then be wirelessly transmitted through the IoT network.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
H. I. K. . Fathurrahman, B. Robi’in, S. S. Saputro, and S. Sudaryanti, “Light sensor optimization based on finger blood estimation and IoT-integrated”, J. Soft Comput. Explor., vol. 5, no. 1, pp. 74-79, Mar. 2024.
Section
Articles

References

J. Liu et al., “Trends in the incidence of diabetes mellitus: results from the Global Burden of Disease Study 2017 and implications for diabetes mellitus prevention,” BMC Public Health, vol. 20, no. 1, p. 1415, Dec. 2020, doi: 10.1186/s12889-020-09502-x.

P. Saeedi et al., “Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition,” Diabetes Res. Clin. Pract., vol. 157, p. 107843, Nov. 2019, doi: 10.1016/j.diabres.2019.107843.

H. Wang et al., “IDF Diabetes Atlas: Estimation of Global and Regional Gestational Diabetes Mellitus Prevalence for 2021 by International Association of Diabetes in Pregnancy Study Group’s Criteria,” Diabetes Res. Clin. Pract., vol. 183, p. 109050, Jan. 2022, doi: 10.1016/j.diabres.2021.109050.

W. Liu et al., “Association between dietary vitamin intake and mortality in US adults with diabetes: A prospective cohort study,” Diabetes. Metab. Res. Rev., vol. 40, no. 2, Feb. 2024, doi: 10.1002/dmrr.3729.

M. Wahidin et al., “Projection of diabetes morbidity and mortality till 2045 in Indonesia based on risk factors and NCD prevention and control programs,” Sci. Rep., vol. 14, no. 1, p. 5424, Mar. 2024, doi: 10.1038/s41598-024-54563-2.

P. Lauwers et al., “The impact of diabetes on mortality rates after lower extremity amputation,” Diabet. Med., vol. 41, no. 1, Jan. 2024, doi: 10.1111/dme.15152.

A. He et al., “Clusters of Body Fat and Nutritional Parameters are Strongly Associated with Diabetic Kidney Disease in Adults with Type 2 Diabetes,” Diabetes Ther., vol. 15, no. 1, pp. 201–214, Jan. 2024, doi: 10.1007/s13300-023-01502-5.

C. H. Firman, D. D. Mellor, D. Unwin, and A. Brown, “Does a Ketogenic Diet Have a Place Within Diabetes Clinical Practice? Review of Current Evidence and Controversies,” Diabetes Ther., vol. 15, no. 1, pp. 77–97, Jan. 2024, doi: 10.1007/s13300-023-01492-4.

A. Pai et al., “Multimodal digital phenotyping of diet, physical activity, and glycemia in Hispanic/Latino adults with or at risk of type 2 diabetes,” npj Digit. Med., vol. 7, no. 1, p. 7, Jan. 2024, doi: 10.1038/s41746-023-00985-7.

K. Bódis et al., “Impact of physical fitness and exercise training on subcutaneous adipose tissue beiging markers in humans with and without diabetes and a high‐fat diet‐fed mouse model,” Diabetes, Obes. Metab., vol. 26, no. 1, pp. 339–350, Jan. 2024, doi: 10.1111/dom.15322.

Z. Zhang, Z. Zhou, and H. Li, “The role of lipid dysregulation in gestational diabetes mellitus: Early prediction and postpartum prognosis,” J. Diabetes Investig., vol. 15, no. 1, pp. 15–25, Jan. 2024, doi: 10.1111/jdi.14119.

T. Handa et al., “Effects of Digitization of Self-Monitoring of Blood Glucose Records Using a Mobile App and the Cloud System on Outpatient Management of Diabetes: Single-Armed Prospective Study,” JMIR Diabetes, vol. 9, p. e48019, Jan. 2024, doi: 10.2196/48019.

M. I. Farooqi, S. Mehar, and R. Abdul Rehman, “Nonpharmacological management of diabetes and self-monitoring of blood glucose,” in BIDE’ s Diabetes Desk Book, Elsevier, 2024, pp. 43–69. doi: 10.1016/B978-0-443-22106-4.00014-0.

G. Freckmann, S. Pleus, M. Grady, S. Setford, and B. Levy, “Measures of Accuracy for Continuous Glucose Monitoring and Blood Glucose Monitoring Devices,” J. Diabetes Sci. Technol., vol. 13, no. 3, pp. 575–583, May 2019, doi: 10.1177/1932296818812062.

H. S. Kim, “Blood Glucose Measurement: Is Serum Equal to Plasma?,” Diabetes Metab. J., vol. 40, no. 5, p. 365, 2016, doi: 10.4093/dmj.2016.40.5.365.

H. T. Le, N. S. Harris, A. J. Estilong, A. Olson, and M. J. Rice, “Blood Glucose Measurement in the Intensive Care Unit: What is the Best Method?,” J. Diabetes Sci. Technol., vol. 7, no. 2, pp. 489–499, Mar. 2013, doi: 10.1177/193229681300700226.

Y. Zou, Z. Chu, J. Guo, S. Liu, X. Ma, and J. Guo, “Minimally invasive electrochemical continuous glucose monitoring sensors: Recent progress and perspective,” Biosens. Bioelectron., vol. 225, p. 115103, Apr. 2023, doi: 10.1016/j.bios.2023.115103.

N. Xu, M. Zhang, W. Xu, G. Ling, J. Yu, and P. Zhang, “Swellable PVA/PVP hydrogel microneedle patches for the extraction of interstitial skin fluid toward minimally invasive monitoring of blood glucose level,” Analyst, vol. 147, no. 7, pp. 1478–1491, 2022, doi: 10.1039/D1AN02288A.

N. Lindner, A. Kuwabara, and T. Holt, “Non-invasive and minimally invasive glucose monitoring devices: a systematic review and meta-analysis on diagnostic accuracy of hypoglycaemia detection,” Syst. Rev., vol. 10, no. 1, p. 145, Dec. 2021, doi: 10.1186/s13643-021-01644-2.

A. S. Bolla and R. Priefer, “Blood glucose monitoring- an overview of current and future non-invasive devices,” Diabetes Metab. Syndr. Clin. Res. Rev., vol. 14, no. 5, pp. 739–751, Sep. 2020, doi: 10.1016/j.dsx.2020.05.016.

L. Tang, S. J. Chang, C.-J. Chen, and J.-T. Liu, “Non-Invasive Blood Glucose Monitoring Technology: A Review,” Sensors, vol. 20, no. 23, p. 6925, Dec. 2020, doi: 10.3390/s20236925.

Y. Yao et al., “Integration of interstitial fluid extraction and glucose detection in one device for wearable non-invasive blood glucose sensors,” Biosens. Bioelectron., vol. 179, p. 113078, May 2021, doi: 10.1016/j.bios.2021.113078.

P.-L. Lee, K.-W. Wang, and C.-Y. Hsiao, “A Noninvasive Blood Glucose Estimation System Using Dual-Channel PPGs and Pulse-Arrival Velocity,” IEEE Sens. J., vol. 23, no. 19, pp. 23570–23582, Oct. 2023, doi: 10.1109/JSEN.2023.3306343.

P. Bollella, S. Sharma, A. E. G. Cass, F. Tasca, and R. Antiochia, “Minimally Invasive Glucose Monitoring Using a Highly Porous Gold Microneedles-Based Biosensor: Characterization and Application in Artificial Interstitial Fluid,” Catalysts, vol. 9, no. 7, p. 580, Jun. 2019, doi: 10.3390/catal9070580.

Y. Wang et al., “A responsive hydrogel-based microneedle system for minimally invasive glucose monitoring,” Smart Mater. Med., vol. 4, pp. 69–77, 2023, doi: 10.1016/j.smaim.2022.07.006.

B. Chua, S. P. Desai, M. J. Tierney, J. A. Tamada, and A. N. Jina, “Effect of microneedles shape on skin penetration and minimally invasive continuous glucose monitoring in vivo,” Sensors Actuators A Phys., vol. 203, pp. 373–381, Dec. 2013, doi: 10.1016/j.sna.2013.09.026.

R. Ortiz La Banca, Y. Pirahanchi, L. K. Volkening, Z. Guo, J. Cartaya, and L. M. Laffel, “Blood glucose monitoring (BGM) still matters for many: Associations of BGM frequency and glycemic control in youth with type 1 diabetes,” Prim. Care Diabetes, vol. 15, no. 5, pp. 832–836, Oct. 2021, doi: 10.1016/j.pcd.2021.05.006.

X. Li et al., “Glucose-Responsive hydrogel optimizing Fenton reaction to eradicate multidrug-resistant bacteria for infected diabetic wound healing,” Chem. Eng. J., vol. 487, p. 150545, May 2024, doi: 10.1016/j.cej.2024.150545.

I. Choucair, E. S. Lee, M. A. Vera, C. Drongmebaro, J. M. El-Khoury, and T. J. S. Durant, “Contamination of clinical blood samples with crystalloid solutions: An experimental approach to derive multianalyte delta checks,” Clin. Chim. Acta, vol. 538, pp. 22–28, Jan. 2023, doi: 10.1016/j.cca.2022.10.011.

R. M. Branch, Instructional Design: The ADDIE Approach. Boston, MA: Springer US, 2009. doi: 10.1007/978-0-387-09506-6.

S.-J. Yu, Y.-L. Hsueh, J. C.-Y. Sun, and H.-Z. Liu, “Developing an intelligent virtual reality interactive system based on the ADDIE model for learning pour-over coffee brewing,” Comput. Educ. Artif. Intell., vol. 2, p. 100030, 2021, doi: 10.1016/j.caeai.2021.100030.

Abstract viewed = 140 times

Most read articles by the same author(s)