Quadrotor height control system using LQR and recurrent artificial neural networks
Main Article Content
Abstract
The quadorotor is a type of unmanned flying vehicle known as Unmanned Aerial Vehicle (UAV). In recent years, quadrotors have attracted much attention from researchers around the world due to their excellent maneuverability. A good control system in this quadrotor system is needed for ease of use of this quadrotor. One control system that is often used is the Linear Quadratic Regulator (LQR) control system. This control system has challenges for dynamic system disturbances in quadrotor control. Researchers proposed a recurrent artificial neural network (RNN) system to address these challenges.RRN is used to change the value of the feedback component in the LQR control system. The nature of the feedback component in LQR, which is static, is changed based on the system error value based on changes in the error value entered into the RNN. The result of this RNN is a change in the value of the LQR feedback component based on the input of the system. The results of this research show that LQR control with RNN produces a faster system response of 0.075 seconds and a faster settling time of 0.221 seconds. Compensation for the system response speed produces a higher overshot value.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
L. Zhou and B. Zhang, “Quadrotor UAV Flight Control Using Backstepping Adaptive Controller,” in 2020 IEEE 6th International Conference on Control Science and Systems Engineering (ICCSSE), Jul. 2020, pp. 163–166. doi: 10.1109/ICCSSE50399.2020.9171967.
Q. Jing, Z. Chang, H. Chu, Y. Shao, and X. Zhang, “Quadrotor Attitude Control Based on Fuzzy Sliding Mode Control Theory,” in 2019 Chinese Control Conference (CCC), Jul. 2019, pp. 8360–8364. doi: 10.23919/ChiCC.2019.8865754.
Q. Jiao, J. Liu, Y. Zhang, and W. Lian, “Analysis and design the controller for quadrotors based on PID control method,” Proc. - 2018 33rd Youth Acad. Annu. Conf. Chinese Assoc. Autom. YAC 2018, no. 15, pp. 88–92, 2018, doi: 10.1109/YAC.2018.8406352.
Y. Cheng, L. Jiang, T. Li, and L. Guo, “Robust tracking control for a quadrotor UAV via DOBC approach,” Proc. 30th Chinese Control Decis. Conf. CCDC 2018, pp. 559–563, 2018, doi: 10.1109/CCDC.2018.8407194.
C. Wang, Z. Chen, Q. Sun, and Z. Qing, “Design of PID and ADRC based quadrotor helicopter control system,” Proc. 28th Chinese Control Decis. Conf. CCDC 2016, pp. 5860–5865, 2016, doi: 10.1109/CCDC.2016.7532046.
M. K. Shaik and J. F. Whidborne, “Robust sliding mode control of a quadrotor,” 2016 UKACC Int. Conf. Control. UKACC Control 2016, 2016, doi: 10.1109/CONTROL.2016.7737529.
T. K. Priyambodo, A. Dharmawan, and A. E. Putra, “PID self tuning control based on Mamdani fuzzy logic control for quadrotor stabilization,” AIP Conf. Proc., vol. 1705, no. 1, p. 020013, Feb. 2016, doi: 10.1063/1.4940261.
F. F. Rahani and T. K. Priyambodo, “Penalaan Mandiri Full State Feedback dengan LQR dan JST Pada Kendali Quadrotor,” IJEIS (Indonesian J. Electron. Instrum. Syst., vol. 9, no. 1, pp. 21–32, Apr. 2019, doi: 10.22146/ijeis.37212.
F. F. Rahani and T. K. Priyambodo, “Implementasi Full State Feedback LQR dengan JST pada Kendali Ketinggian Quadrotor,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 8, no. 4, p. 357, Nov. 2019, doi: 10.22146/jnteti.v8i4.536.
J. Fei and C. Lu, “Adaptive Sliding Mode Control of Dynamic Systems Using Double Loop Recurrent Neural Network Structure,” IEEE Trans. Neural Networks Learn. Syst., vol. 29, no. 4, pp. 1275–1286, 2018, doi: 10.1109/TNNLS.2017.2672998.
H. Housny, E. Chater, and H. El Fadil, “Multi-closed-loop design for quadrotor path-tracking control,” 2019 8th Int. Conf. Syst. Control. ICSC 2019, pp. 27–32, 2019, doi: 10.1109/ICSC47195.2019.8950659.
Z. Yan and Y. Zhou, “Application to Optimal Control of Brushless DC Motor with ADRC Based on Genetic Algorithm,” Proc. 2020 IEEE Int. Conf. Adv. Electr. Eng. Comput. Appl. AEECA 2020, pp. 1032–1035, 2020, doi: 10.1109/AEECA49918.2020.9213554.
R. Sharma, V. Kumar, P. Gaur, and A. P. Mittal, “An adaptive PID like controller using mix locally recurrent neural network for robotic manipulator with variable payload,” ISA Trans., vol. 62, pp. 258–267, 2016, doi: 10.1016/j.isatra.2016.01.016.
F. M. S. Al-Zwainy, F. M. Al-Zwainy, H. Ala, and H. F. Ibraheem, “Predicting productivity in construction industry utilizing multiple linear regression technique and artificial neural network technique: A review for research and applications,” Int. J. Res. Adv. Eng. Technol. 7 Int. J. Res. Adv. Eng. Technol., 2020.
W. K. Alqaisi, B. Brahmi, J. Ghommam, M. Saad, and V. Nerguizian, “Adaptive Sliding mode Control Based on RBF Neural Network Approximation for Quadrotor,” IEEE Int. Symp. Robot. Sensors Environ. ROSE 2019 - Proc., 2019, doi: 10.1109/ROSE.2019.8790423.
C. Sun, T. Lu, and K. Yuan, “Balance control of two-wheeled self-balancing robot based on Linear Quadratic Regulator and Neural Network,” 2013 Fourth Int. Conf. Intell. Control Inf. Process., vol. 1, pp. 862–867, 2013, doi: 10.1109/ICICIP.2013.6568193.
P. Gautam, “Optimal control of Inverted Pendulum system using ADALINE artificial neural network with LQR,” 2016 Int. Conf. Recent Adv. Innov. Eng., pp. 1–6, 2016, doi: 10.1109/ICRAIE.2016.7939523.
F. F. Rahani and P. A. Rosyady, “Quadrotor Altitude Control using Recurrent Neural Network PID,” Bul. Ilm. Sarj. Tek. Elektro, vol. 5, no. 2, pp. 279–290, Apr. 2023, doi: 10.12928/biste.v5i2.8455.
L. R. García Carrillo, A. E. Dzul López, R. Lozano, and C. Pégard, Quad Rotorcraft Control, vol. 1. London: Springer London, 2013.
O. A. Dhewa and F. F. Rahani, “Peningkatan Kestabilan Quadrotor menggunakan Kendali Linear Quadratic Regulator dengan Kompensasi Integrator dalam Mempertahankan Posisi,” Bul. Ilm. Sarj. Tek. Elektro, vol. 4, no. 2, pp. 62–75, Nov. 2022, doi: 10.12928/biste.v4i2.6808.
Z. Tahir, “State Space System Modeling of a Quad Copter UAV,” Indian J. Sci. Technol., vol. 8, no. 1, pp. 1–5, Jan. 2015, doi: 10.17485/ijst/2016/v9i27/95239.