New fuzzy transportation algorithm without converting fuzzy numbers

Main Article Content

Muhammad Sam'an
Yahya Nur Ifriza

Abstract

The ranking function is widely used to convert fuzzy numbers to be crisp on solving fuzzy transportation problems. The converting process can indeed make it easier to play the fuzzy transportation method, but from the convenience, it causes failed in interpreting the results of converting fuzzy numbers. This is because the converting process of fuzzy numbers still has subjectivity values, so it cannot be eliminated, moreover, the ordering can cause incompatible input and output fuzzy numbers resulted. Therefore, the new fuzzy transportation method is proposed by fuzzy Analytical Hierarchy Process to order fuzzy parameters on fuzzy transportation problem without converting fuzzy numbers to crisp numbers, then Algorithm 2 until 6 is used to obtain a fuzzy optimal solution. The advantages of the new proposed method can improve the shortcomings of the existing methods, as well as relevant to solve fuzzy transportation problems in real life

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
M. Sam’an and Y. N. Ifriza, “ New fuzzy transportation algorithm without converting fuzzy numbers”, JOSCEX, vol. 2, no. 2, pp. 67-76, Sep. 2021.
Section
Articles

References

F. L. Hitchcock, “The Distribution of a Product from Several Sources to Numerous Localities”, J. Math. Phys., vol. 20, no. 1–4, pp. 224–230, 1941, doi: 10.1002/sapm1941201224.

L. A. Zadeh, “Fuzzy sets”, Inf. Control, vol. 8, no. 3, pp. 338–353, 1965, doi: 10.1016/S0019-9958(65)90241-X.

H. J. Zimmermann, “Fuzzy programming and linear programming with several objective functions”, Fuzzy Sets Syst., vol. 1, no. 1, pp. 45–55, 1978, doi: 10.1016/0165-0114(78)90031-3.

S. T. Liu eta C. Kao, “Solving fuzzy transportation problems based on extension principle”, Eur. J. Oper. Res., vol. 153, no. 3 SPEC. ISS., pp. 661–674, 2003, doi: 10.1016/S0377-2217(02)00731-2.

K. Dinagar, D, Palanivel, “The Transportation Problem in Fuzzy Environment”, Int. J. Algorithms, Comput. Math., vol. 2, no. 3, pp. 411–420, 2009.

A. Kumar, J. Kaur, and P. Singh, “A new method for solving fully fuzzy linear programming problems”, Appl. Math. Model., vol. 35, no. 2, pp. 817–823, 2011, doi: 10.1016/j.apm.2010.07.037.

A. Nagoor Gani, A. Edward Samuely, and D. Anuradha, “Simplex type algorithm for solving fuzzy transportation problem”, Tamsui Oxford J. Math. Sci., vol. 27, no. 1, pp. 89–98, 2011.

P. Senthilkumar and S. Vengataasalam, “A note on the solution of fuzzy transportation problem using fuzzy linear system”, J. Fuzzy Set Valued Anal., vol. 2013, pp. 1–9, 2013, doi: 10.5899/2013/jfsva-00138.

A. E. Samuel and M. Venkatachalapathy, “Modified Vogel’s approximation method for fuzzy transportation problems”, Appl. Math. Sci., vol. 5, pp. 1367–1372, 2011.

H. Basirzadeh, “An Approach for solving Fuzzy transportation problem”, Appl. Math. Sci., vol. 5, no. 29–32, pp. 1549–1566, 2011.

A. Kumar, P. Kaur, and J. Kaur, “Fuzzy optimal solution of fully fuzzy project crashing problems with new representation of LR flat fuzzy numbers”, in Lect. Notes Comput. Sci. (incl. subser. Lect. Notes Artif. Intell. Lect. Notes Bioinform.), 2011, vol. 6743 LNAI, pp. 171–174, doi: 10.1007/978-3-642-21881-1_28.

A. Kaur and A. Kumar, “A new approach for solving fuzzy transportation problems using generalized trapezoidal fuzzy numbers”, Appl. Soft Comput. J., vol. 12, no. 3, pp. 1201–1213, 2012, doi: 10.1016/j.asoc.2011.10.014.

P. Shugani, S. H. Abbas, and V. Gupta, “Unbalanced Fuzzy Transportation Problem With Roubast Ranking Technique”, Asian J. Curr. Eng. Maths, pp. 94–97, 2012.

K. Kadhirvel and K. Balamurugan, “Method For Solving The Transportation Problems Using Trapezoridal Fuzzy Numbers”, Int. J. Eng. Res. Appl., vol. 2, pp. 2154–2158, 2012.

M. Shanmugasundari and K. Ganesan, “A novel approach for the fuzzy optimal solution of fuzzy transportation problem”, Transportation (Amst)., vol. 3, no. 1, 2013.

S. SinghChauhan and N. Joshi, “Solution of Fuzzy Transportation Problem using Improved VAM with Roubast Ranking Technique”, Int. J. Comput. Appl., vol. 82, no. 15, pp. 6–8, 2013, doi: 10.5120/14237-1165.

S. Chandran and G. Kandaswamy, “A fuzzy approach to transport optimization problem”, Optim. Eng., vol. 17, no. 4, pp. 965–980, 2016, doi: 10.1007/s11081-012-9202-6.

A. Ebrahimnejad, “A simplified new approach for solving fuzzy transportation problems with generalized trapezoidal fuzzy numbers”, Appl. Soft Comput. J., vol. 19, pp. 171–176, 2014, doi: 10.1016/j.asoc.2014.01.041.

S. K. Singh and S. P. Yadav, “A new approach for solving intuitionistic fuzzy transportation problem of type-2”, Ann. Oper. Res., vol. 243, no. 1–2, pp. 349–363, 2016, doi: 10.1007/s10479-014-1724-1.

A. Ebrahimnejad, “Note on “A fuzzy approach to transport optimization problem”“, Optim. Eng., vol. 17, no. 4, pp. 981–985, 2016, doi: 10.1007/s11081-015-9277-y.

N. Mathur, P. K. Srivastava, and A. Paul, “Trapezoidal fuzzy model to optimize transportation problem”, Int. J. Model. Simulation, Sci. Comput., vol. 7, no. 3, 2016, doi: 10.1142/S1793962316500288.

D. Chakraborty, D. K. Jana, and T. K. Roy, “A new approach to solve fully fuzzy transportation problem using triangular fuzzy number”, Int. J. Oper. Res., vol. 26, no. 2, pp. 153–179, 2016, doi: 10.1504/IJOR.2016.076299.

D. Hunwisai and P. Kumam, “A method for solving a fuzzy transportation problem via Robust ranking technique and ATM”, Cogent Math., vol. 4, no. 1, 2017, doi: 10.1080/23311835.2017.1283730.

P. K. Srivastava and D. C. S. Bisht, “Dichotomized incenter fuzzy triangular ranking approach to optimize interval data based transportation problem”, Cybern. Inf. Technol., vol. 18, no. 4, pp. 111–119, 2018, doi: 10.2478/cait-2018-0051.

D. Stephen Dinagar and B. Christopar Raj, “A method for solving fully fuzzy transportation problem with generalized quadrilateral fuzzy numbers”, Malaya J. Mat., vol. S, no. 1, pp. 24–27, 2019, doi: 10.26637/mjm0s01/0007.

K. Balasubramanian and S. Subramanian, “Optimal solution of fuzzy transportation problems using ranking function”, Int. J. Mech. Prod. Eng. Res. Dev., vol. 8, no. 4, pp. 551–558, 2018, doi: 10.24247/ijmperdaug201856.

A. N. Gani and K. A. Razak, “Two Stage Fuzzy Transportation Problem”, J. Phys. Sci., vol. 10, pp. 63–69, 2006.

P. Pandian and G. Natarajan, “A new algorithm for finding a fuzzy optimal solution for fuzzy transportation problems”, Appl. Math. Sci., vol. 4, no. 1–4, pp. 79–90, 2010.

A. A. Hamada, “Solve the fuzzy transport problems (FTP) to reduce transport costs using a modern method (an empirical study)”, J. Adv. Res. Dyn. Control Syst., vol. 10, no. 13, pp. 1959–1972, 2018.

R. Kumar, S. A. Edalatpanah, S. Jha, and R. Singh, “A Pythagorean fuzzy approach to the transportation problem”, Complex Intell. Syst., vol. 5, no. 2, pp. 255–263, 2019, doi: 10.1007/s40747-019-0108-1.