Improved convolutional neural network model for leukemia classification using EfficientNetV2M and bayesian optimization
Main Article Content
Abstract
Leukemia is a health condition in which the body produces too many abnormal white blood cells or leukocytes. Leukemia can affect both children and adults. Early diagnosis of leukemia faces significant challenges, as diagnostic methods are time consuming, require experienced medical experts, and are expensive. Previous studies have been conducted using deep learning approaches, but it is still rare to find a model that shows the best performance and uses optimization methods to classify leukemia diseases. Therefore, a Convolutional Neural Network (CNN) model with EfficientNetV2M architecture and Bayesian Optimization is proposed as the main method assisted by ImageDataGenerator in preprocessing. This study shows a significant impact of Bayesian optimization with good Accuracy, Precision, Recall and F1-Score results of 91.37%, 93.00%, 87.00%, 89.00%, respectively, which are expected to improve the performance of the model in previous studies in classifying leukemia diseases.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
O. Attallah, “Acute lymphocytic leukemia detection and subtype classification via extended wavelet pooling based-CNNs and statistical-texture features,” Image Vis Comput, vol. 147, Jul. 2024, doi: 10.1016/j.imavis.2024.105064.
L. H. S. Vogado, R. M. S. Veras, F. H. D. Araujo, R. R. V. Silva, and K. R. T. Aires, “Leukemia diagnosis in blood slides using transfer learning in CNNs and SVM for classification,” Eng Appl Artif Intell, vol. 72, pp. 415–422, Jun. 2018, doi: 10.1016/j.engappai.2018.04.024.
M. L. Claro et al., “Assessing the impact of data augmentation and a combination of CNNs on leukemia classification,” Inf Sci (N Y), vol. 609, pp. 1010–1029, Sep. 2022, doi: 10.1016/j.ins.2022.07.059.
M. T. Aziz, S. M. H. Mahmud, K. O. M. Goh, and D. Nandi, “Addressing label noise in leukemia image classification using small loss approach and pLOF with weighted-average ensemble,” Egyptian Informatics Journal, vol. 26, Jun. 2024, doi: 10.1016/j.eij.2024.100479.
L. Boldú, A. Merino, A. Acevedo, A. Molina, and J. Rodellar, “A deep learning model (ALNet) for the diagnosis of acute leukaemia lineage using peripheral blood cell images,” Comput Methods Programs Biomed, vol. 202, Apr. 2021, doi: 10.1016/j.cmpb.2021.105999.
N. Ouyang et al., “Diagnosing acute promyelocytic leukemia by using convolutional neural network,” Clinica Chimica Acta, vol. 512, pp. 1–6, Jan. 2021, doi: 10.1016/j.cca.2020.10.039.
K. A. H. Wibowo and A. Alamsyah, “Klasifikasi Diabetic Retinopathy Menggunakan CNN dengan Arsitektur yang Dimodifikasi,” Indones. J. Math. Nat. Sci, vol. 46, no. 1, p. 2023, [Online]. Available: http://journal.unnes.ac.id/nju/index.php/JM
K. Dese et al., “Accurate Machine-Learning-Based classification of Leukemia from Blood Smear Images,” Clin Lymphoma Myeloma Leuk, vol. 21, no. 11, pp. e903–e914, Nov. 2021, doi: 10.1016/j.clml.2021.06.025.
K. K. Anilkumar, V. J. Manoj, and T. M. Sagi, “Automated detection of leukemia by pretrained deep neural networks and transfer learning: A comparison,” Med Eng Phys, vol. 98, pp. 8–19, Dec. 2021, doi: 10.1016/j.medengphy.2021.10.006.
P. K. Das and S. Meher, “An efficient deep Convolutional Neural Network based detection and classification of Acute Lymphoblastic Leukemia,” Expert Syst Appl, vol. 183, Nov. 2021, doi: 10.1016/j.eswa.2021.115311.
A. Abhishek, R. K. Jha, R. Sinha, and K. Jha, “Automated classification of acute leukemia on a heterogeneous dataset using machine learning and deep learning techniques,” Biomed Signal Process Control, vol. 72, Feb. 2022, doi: 10.1016/j.bspc.2021.103341.
M. M. Ahsan, S. Raman, Y. Liu, and Z. Siddique, “Defect analysis of 3D printed object using transfer learning approaches,” Expert Syst Appl, vol. 253, Nov. 2024, doi: 10.1016/j.eswa.2024.124293.
C. Mondal et al., “Ensemble of Convolutional Neural Networks to diagnose Acute Lymphoblastic Leukemia from microscopic images,” Inform Med Unlocked, vol. 27, Jan. 2021, doi: 10.1016/j.imu.2021.100794.
M. T. Aziz, S. M. H. Mahmud, K. O. M. Goh, and D. Nandi, “Addressing label noise in leukemia image classification using small loss approach and pLOF with weighted-average ensemble,” Egyptian Informatics Journal, vol. 26, Jun. 2024, doi: 10.1016/j.eij.2024.100479.
C. Mondal et al., “Ensemble of Convolutional Neural Networks to diagnose Acute Lymphoblastic Leukemia from microscopic images,” Inform Med Unlocked, vol. 27, Jan. 2021, doi: 10.1016/j.imu.2021.100794.
M. Ahmad et al., “Industry 4.0 technologies and their applications in fighting COVID-19 pandemic using deep learning techniques,” Comput Biol Med, vol. 145, Jun. 2022, doi: 10.1016/j.compbiomed.2022.105418.
V. Singla, S. Bawa, and J. Singh, “Enhancing Indian sign language recognition through data augmentation and visual transformer,” Neural Comput Appl, 2024, doi: 10.1007/s00521-024-09845-1.
N. H. Shabrina, R. A. Lika, and S. Indarti, “Deep learning models for automatic identification of plant-parasitic nematode,” Artificial Intelligence in Agriculture, vol. 7, pp. 1–12, Mar. 2023, doi: 10.1016/j.aiia.2022.12.002.
A. Koul, R. K. Bawa, and Y. Kumar, “Enhancing the detection of airway disease by applying deep learning and explainable artificial intelligence,” Multimed Tools Appl, 2024, doi: 10.1007/s11042-024-18381-y.
H. Syamsudin, S. Khalidah, and J. Unjung, “Lepidoptera Classification Using Convolutional Neural Network EfficientNet-B0,” Indonesian Journal of Artificial Intelligence and Data Mining, vol. 7, no. 1, Nov. 2023, doi: 10.24014/ijaidm.v7i1.24586.
R. Guo et al., “Machine learning-based prediction of outdoor thermal comfort: Combining Bayesian optimization and the SHAP model,” Build Environ, vol. 254, Apr. 2024, doi: 10.1016/j.buildenv.2024.111301.
G. Ye et al., “Prediction of effluent total nitrogen and energy consumption in wastewater treatment plants: Bayesian optimization machine learning methods,” Bioresour Technol, vol. 395, Mar. 2024, doi: 10.1016/j.biortech.2024.130361.
M. A. Khan et al., “HGRBOL2: Human gait recognition for biometric application using Bayesian optimization and extreme learning machine,” Future Generation Computer Systems, vol. 143, pp. 337–348, Jun. 2023, doi: 10.1016/j.future.2023.02.005.
K. A. H. Wibowo, S. A. H. Putri, J. Jumanto, and M. A. Muslim, “Random State Initialized Logistic Regression for Improved Heart Attack Prediction,” Jurnal ELTIKOM, vol. 7, no. 2, pp. 116–124, Dec. 2023, doi: 10.31961/eltikom.v7i2.822.
M. A. Muslim et al., “New model combination meta-learner to improve accuracy prediction P2P lending with stacking ensemble learning,” Intelligent Systems with Applications, vol. 18, May 2023, doi: 10.1016/j.iswa.2023.200204.
Y. Fu, L. Guo, and F. Huang, “A lightweight CNN model for pepper leaf disease recognition in a human palm background,” Heliyon, vol. 10, no. 12, p. e33447, Jun. 2024, doi: 10.1016/j.heliyon.2024.e33447.
A. G. Argho, M. M. S. Maswood, M. I. Mahmood, and N. Mondol, “EfficientCovNet: A CNN-based approach to detect various pulmonary diseases including COVID-19 using modified EfficientNet,” Intelligent Systems with Applications, vol. 21, Mar. 2024, doi: 10.1016/j.iswa.2023.200315.
D. K. Saha, A. M. Joy, and A. Majumder, “YoTransViT: A transformer and CNN method for predicting and classifying skin diseases using segmentation techniques,” Inform Med Unlocked, vol. 47, Jan. 2024, doi: 10.1016/j.imu.2024.101495.
C. Ashwini and V. Sellam, “An optimal model for identification and classification of corn leaf disease using hybrid 3D-CNN and LSTM,” Biomed Signal Process Control, vol. 92, Jun. 2024, doi: 10.1016/j.bspc.2024.106089.
A. Abhishek, R. K. Jha, R. Sinha, and K. Jha, “Automated detection and classification of leukemia on a subject-independent test dataset using deep transfer learning supported by Grad-CAM visualization,” Biomed Signal Process Control, vol. 83, May 2023, doi: 10.1016/j.bspc.2023.104722.
P. Rastogi, K. Khanna, and V. Singh, “LeuFeatx: Deep learning–based feature extractor for the diagnosis of acute leukemia from microscopic images of peripheral blood smear,” Comput Biol Med, vol. 142, Mar. 2022, doi: 10.1016/j.compbiomed.2022.105236.
M. Subramanian, J. Cho, V. E. Sathishkumar, and O. S. Naren, “Multiple Types of Cancer Classification Using CT/MRI Images Based on Learning Without Forgetting Powered Deep Learning Models,” IEEE Access, vol. 11, pp. 10336–10354, 2023, doi: 10.1109/ACCESS.2023.3240443.
J. Unjung and M. R. Ningsih, “Optimized Handwriting-based Parkinson’s Disease Classification Using Ensemble Modeling and VGG19 Feature Extraction,” Scientific Journal of Informatics, vol. 10, no. 4, p. 489, 2023, doi: 10.15294/sji.v10i4.47108.
B. P. Amiruddin and R. E. A. Kadir, “CNN Architectures Performance Evaluation for Image Classification of Mosquito in Indonesia,” IEEE, pp. 223–227, 2020.
M. Akay et al., “Deep Learning Classification of Systemic Sclerosis Skin Using the MobileNetV2 Model,” IEEE Open J Eng Med Biol, vol. 2, pp. 104–110, 2021, doi: 10.1109/OJEMB.2021.3066097.