Sentiment based-emotion classification using bidirectional long short term-memory (Bi-LSTM)

Main Article Content

Putri Utami
Maylinna Rahayu Ningsih
Dwika Ananda Agustina Pertiwi
Jumanto Unjung

Abstract

Social media is now an important platform for sharing information, expressing opinions, and daily feelings or emotions. The expression of emotions such as anger, sadness, fear, happiness, disappointment, and so on social networks can be further analyzed either for business purposes or just analyzing the habits of a community or someone's posts.  However, analyzing manually will be a time-consuming process, and the use of conventional methods can affect the results of less accurate accuracy. This research aims to improve the accuracy of recognizing emotions in text by using the Bidirectional Long Short Term Memory (Bi-LSTM) method, which is a subset of RNNs that tend to be more stable during training and show better performance on various NLP and other processing tasks. The method used includes several stages, namely preprocessing, tokenization, sequence padding, and modeling. The results of this study show that the Bi-LSTM model is capable of predicting emotions in text with an accuracy of 94.45% because it excels in handling the temporal context and can avoid vanishing gradients.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
P. Utami, M. R. Ningsih, D. A. A. Pertiwi, and J. Unjung, “Sentiment based-emotion classification using bidirectional long short term-memory (Bi-LSTM)”, J. Soft Comput. Explor., vol. 5, no. 3, pp. 281-289, Sep. 2024.
Section
Articles

References

S. S. Hasbullah, “Rule-based agent for social media sentiment detection,” 2nd Int. Symp. Agent, Multi-Agent Syst. Robot. ISAMSR 2016, no. August, pp. 128–132, 2017, doi: 10.1109/ISAMSR.2016.7810015.

R. Singh and P. Sharma, “An Overview of Social Media and Sentiment Analysis,” 2021 5th Int. Conf. Inf. Syst. Comput. Networks, ISCON 2021, pp. 1–4, 2021, doi: 10.1109/ISCON52037.2021.9702359.

U. B. Mahadevaswamy and P. Swathi, “Sentiment Analysis using Bidirectional LSTM Network,” Procedia Comput. Sci., vol. 218, pp. 45–56, 2022, doi: 10.1016/j.procs.2022.12.400.

R. Sowmiya, G. Sivakamasundari, and V. Archana, “Text-Based Emotion Recognition Using Deep Learning Approach,” Int. Conf. Autom. Comput. Renew. Syst. ICACRS 2022 - Proc., vol. 2022, pp. 1064–1069, 2022, doi: 10.1109/ICACRS55517.2022.10029092.

A. B. Gumelar, E. M. Yuniarto, W. Anggraeni, I. Sugiarto, A. A. Kristanto, and M. H. Purnomo, “Kombinasi Fitur Multispektrum Hilbert dan Cochleagram untuk Identifikasi Emosi Wicara (Spectrum Features Combination of Hilbert and Cochleagram for Speech Emotions Identification),” J. Nas. Tek. Elektro dan Teknol. Inf. |, vol. 9, no. 2, pp. 180–189, 2020.

Ainurrochman, D. P. Adi, and A. B. Gumelar, “Deteksi Emosi Wicara pada Media On-Demand menggunakan SVM dan LSTM,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 5, pp. 799–804, 2020, doi: 10.29207/resti.v4i5.2073.

H. Rong, T. Ma, X. Cao, X. Yu, and G. Chen, “TEP2MP: A text-emotion prediction model oriented to multi-participant text-conversation scenario with hybrid attention enhancement,” Math. Biosci. Eng., vol. 19, no. 3, pp. 2671–2699, 2022, doi: 10.3934/MBE.2022122.

J. Huang, B. Liu, and J. Tao, “Learning long-term temporal contexts using skip RNN for continuous emotion recognition,” Virtual Real. Intell. Hardw., vol. 3, no. 1, pp. 55–64, 2021, doi: 10.1016/j.vrih.2020.11.005.

A. Kołakowska, W. Szwoch, and M. Szwoch, “A review of emotion recognition methods based on data acquired via smartphone sensors,” Sensors (Switzerland), vol. 20, no. 21, pp. 1–43, 2020, doi: 10.3390/s20216367.

E. a. Chowdary, M. Kalpana, Anitha, J, “Emotion recognition from EEG signals by using LSTM recurrent neural networks,” J. Nanjing Univ. Nat. Sci., vol. 55, no. 1, pp. 110–116, 2019.

A. Khatoon et al., “Emerging novel sequence types of Staphylococcus aureus in Pakistan,” J. Infect. Public Health, vol. 17, no. 1, pp. 51–59, 2024, doi: 10.1016/j.jiph.2023.10.036.

S. Chamishka et al., “A voice-based real-time emotion detection technique using recurrent neural network empowered feature modelling,” Multimed. Tools Appl., vol. 81, no. 24, pp. 35173–35194, 2022, doi: 10.1007/s11042-022-13363-4.

K. Machová, M. Szabóova, J. Paralič, and J. Mičko, “Detection of emotion by text analysis using machine learning,” Front. Psychol., vol. 14, no. September, 2023, doi: 10.3389/fpsyg.2023.1190326.

S. Yoon, S. Byun, and K. Jung, “Multimodal Speech Emotion Recognition Using Audio and Text,” 2018 IEEE Spok. Lang. Technol. Work. SLT 2018 - Proc., pp. 112–118, 2018, doi: 10.1109/SLT.2018.8639583.

M. Kaur and A. Mohta, “A Review of Deep Learning with Recurrent Neural Network,” Proc. 2nd Int. Conf. Smart Syst. Inven. Technol. ICSSIT 2019, no. Icssit, pp. 460–465, 2019, doi: 10.1109/ICSSIT46314.2019.8987837.

M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,” IEEE Trans. Signal Process., vol. 45, no. 11, pp. 2673–2681, 1997, doi: 10.1109/78.650093.

F. Guo et al., “A Hybrid Stacking Model for Enhanced Short-Term Load Forecasting,” Electron., vol. 13, no. 14, pp. 1–16, 2024, doi: 10.3390/electronics13142719.

F. Long, K. Zhou, and W. Ou, “Sentiment analysis of text based on bidirectional LSTM with multi-head attention,” IEEE Access, vol. 7, pp. 141960–141969, 2019, doi: 10.1109/ACCESS.2019.2942614.

O. I. Abiodun et al., “Comprehensive Review of Artificial Neural Network Applications to Pattern Recognition,” IEEE Access, vol. 7, pp. 158820–158846, 2019, doi: 10.1109/ACCESS.2019.2945545.

I. Markoulidakis and G. Markoulidakis, “Probabilistic Confusion Matrix: A Novel Method for Machine Learning Algorithm Generalized Performance Analysis,” Technologies, vol. 12, no. 7, 2024, doi: 10.3390/technologies12070113.

A. Yousaf et al., “Emotion Recognition by Textual Tweets Classification Using Voting Classifier (LR-SGD),” IEEE Access, vol. 9, pp. 6286–6295, 2021, doi: 10.1109/ACCESS.2020.3047831.

M. A. Riza and N. Charibaldi, “Emotion Detection in Twitter Social Media Using Long Short-Term Memory (LSTM) and Fast Text,” Int. J. Artif. Intell. Robot., vol. 3, no. 1, pp. 15–26, 2021, doi: 10.25139/ijair.v3i1.3827.

A. Glenn, P. LaCasse, and B. Cox, “Emotion classification of Indonesian Tweets using Bidirectional LSTM,” Neural Comput. Appl., vol. 35, no. 13, pp. 9567–9578, 2023, doi: 10.1007/s00521-022-08186-1.

N. A. Sharupa, M. Rahman, N. Alvi, M. Raihan, A. Islam, and T. Raihan, “Emotion Detection of Twitter Post using Multinomial Naive Bayes,” 2020 11th Int. Conf. Comput. Commun. Netw. Technol. ICCCNT 2020, 2020, doi: 10.1109/ICCCNT49239.2020.9225432.

A. F. Ab Nasir et al., “Text-based emotion prediction system using machine learning approach,” IOP Conf. Ser. Mater. Sci. Eng., vol. 769, no. 1, 2020, doi: 10.1088/1757-899X/769/1/012022.

Z. Rajabi, O. Uzuner, and A. Shehu, “A Multi-channel BiLSTM-CNN model for multilabel emotion classification of informal text,” Proc. - 14th IEEE Int. Conf. Semant. Comput. ICSC 2020, pp. 303–306, 2020, doi: 10.1109/ICSC.2020.00060.

A. Chiorrini, C. Diamantini, A. Mircoli, and D. Potena, “Emotion and sentiment analysis of tweets using BERT,” CEUR Workshop Proc., vol. 2841, no. March, 2021.

Abstract viewed = 196 times

Most read articles by the same author(s)