Global recession sentiment analysis utilizing VADER and ensemble learning method with word embedding

Main Article Content

Maylinna Rahayu Ningsih
Kevyn Aalifian Hernanda Wibowo
Ahmad Ubai Dullah
Jumanto Jumanto

Abstract

The issue of the Global Recession is hitting various countries, including Indonesia. Many Indonesians have expressed their opinions on the issue of the global recession in 2023, one of which is from Twitter. By understanding public sentiment, we can assess the impact felt by the public on the issue itself. Sentiment analysis in this research is a form of support to evaluate Indonesia's sustainability in dealing with the issue of Global Recession in accordance with the Sustainable Development Goals (SDGs). However, in previous research, it is still rare to find a model that has good performance in conducting Global Recession Sentiment Analysis. Therefore, the purpose of this research is to propose a machine learning model that is expected to provide good performance in sentiment analysis. The existing sentiment dataset is labeled with the Valence Aware Dictionary for Social Reasoning (VADER) algorithm, then an Ensemble Learning method is designed which is composed of Logistic Regression, Decision Tree, Random Forest, and Support Vector Machine (SVM) algorithms. After that, the Countvectorizer feature extraction with N-Gram, Best Match 25 (BM25), and Word Embedding is carried out to convert sentences in the dataset into numerical vectors so as to improve model performance. The research results provide a more optimal accuracy performance of 95.02% in classifying sentiment. So that the proposed model successfully performs sentiment analysis better than previous research.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
M. R. Ningsih, K. A. H. . Wibowo, A. U. . Dullah, and J. Jumanto, “Global recession sentiment analysis utilizing VADER and ensemble learning method with word embedding”, J. Soft Comput. Explor., vol. 4, no. 3, pp. 142-151, Sep. 2023.
Section
Articles

References

B. Erten dan J. Antonio, “The future of commodity prices and the pandemic-driven global recession : Evidence from 150 years of data,” World Dev., vol. 137, hal. 105164, 2021, doi: 10.1016/j.worlddev.2020.105164.

S. M. S. Yobel Rayfinando Tua Hutagaol, Ronaldo Putra Pratama Sinurat, “Sttrategi penguatan keuangan ngara dalam menghadapi ancaman resesi global 2023 melalui green economy,” J. pajak dan Keuang. negara, hal. 378–385, 2023.

K. Ahmed et al., “Breaking down linguistic complexities : A structured approach to aspect- based sentiment analysis,” J. King Saud Univ. - Comput. Inf. Sci., vol. 35, no. 8, hal. 101651, 2023, doi: 10.1016/j.jksuci.2023.101651.

A. Gutub, M. Khaled, dan M. A. Abu-hashem, “Coronavirus impact on human feelings during 2021 Hajj season via deep learning critical Twitter analysis,” J. Eng. Res., vol. 11, no. 1, hal. 100001, 2023, doi: 10.1016/j.jer.2023.100001.

F. Altuntas, S. Altuntas, dan T. Dereli, “International Journal of Information Management Data Insights Social network analysis of tourism data : A case study of quarantine decisions in COVID-19 pandemic,” Int. J. Inf. Manag. Data Insights, vol. 2, no. 2, hal. 100108, 2022, doi: 10.1016/j.jjimei.2022.100108.

F. Shatnawi, “Detecting Epidemic Diseases Using Sentiment Analysis of Arabic Tweets,” vol. 26, no. 1, hal. 50–70, 2020.

K. Garcia dan L. Berton, “Topic detection and sentiment analysis in Twitter content related to COVID-19 from Brazil and the USA,” Appl. Soft Comput. J., vol. 101, hal. 107057, 2021, doi: 10.1016/j.asoc.2020.107057.

H. Yan, M. Ma, Y. Wu, H. Fan, dan C. Dong, “Heliyon Overview and analysis of the text mining applications in the construction industry,” Heliyon, vol. 8, no. September, hal. e12088, 2022, doi: 10.1016/j.heliyon.2022.e12088.

R. Hillan, “LAPORAN TEK NIK KOMPILASI SUNDANESE LANGUAGE,” 2021.

E. Rosenberg et al., “Results in Engineering Sentiment analysis on Twitter data towards climate action,” Results Eng., vol. 19, no. July, hal. 101287, 2023, doi: 10.1016/j.rineng.2023.101287.

N. Leelawat, S. Jariyapongpaiboon, A. Promjun, dan S. Boonyarak, “Heliyon Twitter data sentiment analysis of tourism in Thailand during the COVID-19 pandemic using machine learning,” Heliyon, vol. 8, no. September, hal. e10894, 2022, doi: 10.1016/j.heliyon.2022.e10894.

H. Xu, R. Liu, Z. Luo, dan M. Xu, “Telematics and Informatics Reports COVID-19 vaccine sensing : Sentiment analysis and subject distillation from twitter data,” vol. 8, no. July, 2022, doi: 10.1016/j.teler.2022.100016.

N. Saleena, “ScienceDirect An Ensemble Classification System for Twitter Sentiment Analysis An Ensemble Classification System for Twitter Sentiment Analysis,” Procedia Comput. Sci., vol. 132, no. Iccids, hal. 937–946, 2018, doi: 10.1016/j.procs.2018.05.109.

M. Rahil, B. N. Anoop, G. N. Girish, A. R. Kothari, S. G. Koolagudi, dan J. Rajan, “A Deep Ensemble Learning-Based CNN Architecture for Multiclass Retinal Fluid Segmentation in OCT Images,” IEEE Access, vol. 11, no. December 2022, hal. 17241–17251, 2023, doi: 10.1109/ACCESS.2023.3244922.

E. H. Y. Wahyu Fadli Satryaa, Ria Aprilliyanib, “Sentiment analysis of Indonesian police chief using multi-level Sentiment analysis of Indonesian police chief using multi-level ensemble model ensemble model,” Procedia Comput. Sci., vol. 216, no. 2022, hal. 620–629, 2023, doi: 10.1016/j.procs.2022.12.177.

D. Sunitha, R. Kumar, N. V Babu, A. Suresh, dan S. Chand, “Twitter sentiment analysis using ensemble based deep learning model towards COVID-19 in India and European countries,” Pattern Recognit. Lett., vol. 158, hal. 164–170, 2022, doi: 10.1016/j.patrec.2022.04.027.

A. S. Talaat, “Sentiment analysis classification system using hybrid BERT models,” J. Big Data, 2023, doi: 10.1186/s40537-023-00781-w.

O. Abiola, A. A. Alli, O. A. Tale, dan S. Misra, “Sentiment analysis of COVID ‑ 19 tweets from selected hashtags in Nigeria using VADER and Text Blob analyser,” J. Electr. Syst. Inf. Technol., vol. 9, 2023, doi: 10.1186/s43067-023-00070-9.

A. Mohi, U. Din, S. Tanzeel, dan Q. Rayees, “Detecting twitter hate speech in COVID-19 era using machine learning and ensemble learning techniques,” Int. J. Inf. Manag. Data Insights, vol. 2, no. 2, hal. 100120, 2022, doi: 10.1016/j.jjimei.2022.100120.

A. Mohi et al., “NNPCov19 : Artificial Neural Network-Based Propaganda Identification on Social Media in COVID-19 Era,” vol. 2022, 2022.

L. Corti, M. Zanetti, G. Tricella, dan M. Bonati, “Social media analysis of Twitter tweets related to ASD in 2019 – 2020 , with particular attention to COVID ‑ 19 : topic modelling and sentiment analysis,” J. Big Data, 2022, doi: 10.1186/s40537-022-00666-4.

N. Parveen, P. Chakrabarti, B. T. Hung, dan A. Shaik, “Twitter sentiment analysis using hybrid gated attention recurrent network,” J. Big Data, 2023, doi: 10.1186/s40537-023-00726-3.

S. Malla dan P. J. A. Alphonse, “COVID-19 outbreak : An ensemble pre-trained deep learning model for detecting informative tweets,” Appl. Soft Comput., vol. 107, hal. 107495, 2021, doi: 10.1016/j.asoc.2021.107495.

J. Jumanto, M. A. Muslim, Y. Dasril, dan T. Mustaqim, “Accuracy of Malaysia Public Response to Economic Factors During the Covid-19 Pandemic Using Vader and Random Forest,” J. Inf. Syst. Explor. Res., vol. 1, no. 1, hal. 49–70, 2022, doi: 10.52465/joiser.v1i1.104.

C. J. Hutto dan E. Gilbert, “VADER: A Parsimonious Rule-based Model for,” Eighth Int. AAAI Conf. Weblogs Soc. Media, hal. 216–225, 2014.

S. Robertson dan H. Zaragoza, “The probabilistic relevance framework: BM25 and beyond,” Found. Trends Inf. Retr., vol. 3, no. 4, hal. 333–389, 2009, doi: 10.1561/1500000019.

A. Al Wazrah dan S. Alhumoud, “Sentiment Analysis Using Stacked Gated Recurrent Unit for Arabic Tweets,” IEEE Access, vol. 9, hal. 137176–137187, 2021, doi: 10.1109/ACCESS.2021.3114313.

T. Huanling et al., “Representation of Semantic Word Embeddings Based on SLDA and Word2vec Model,” Chinese J. Electron., vol. 32, no. 3, hal. 647–654, 2023, doi: 10.23919/cje.2021.00.113.

S. Y. Ihm, J. H. Lee, dan Y. H. Park, “Skip-gram-KR: Korean word embedding for semantic clustering,” IEEE Access, vol. 7, hal. 39948–39961, 2019, doi: 10.1109/ACCESS.2019.2905252.

R. Jayapermana, A. Aradea, dan N. I. Kurniati, “Implementation of Stacking Ensemble Classifier for Multi-class Classification of COVID-19 Vaccines Topics on Twitter,” Sci. J. Informatics, vol. 9, no. 1, hal. 8–15, 2022, doi: 10.15294/sji.v9i1.31648.

M. A. Muslim et al., “New model combination meta-learner to improve accuracy prediction P2P lending with stacking ensemble learning,” Intell. Syst. with Appl., vol. 18, no. December 2022, hal. 200204, 2023, doi: 10.1016/j.iswa.2023.200204.

S. M. Abd-Elsalam, M. M. Ezz, S. Gamalel-Din, G. Esmat, A. Salama, dan M. ElHefnawi, “Early diagnosis of esophageal varices using Boosted-Naïve Bayes Tree: A multicenter cross-sectional study on chronic hepatitis C patients,” Informatics Med. Unlocked, vol. 20, hal. 100421, 2020, doi: 10.1016/j.imu.2020.100421.

S. K. Arts dan S. K. Arts, “Performance Evaluation of Machine Learning Algorithms for Email Spam Detection,” hal. 1–4, 2020.

M. J. Nayeem, S. Rana, F. Alam, dan M. A. Rahman, “Prediction of Hepatitis Disease Using K-Nearest Neighbors, Naive Bayes, Support Vector Machine, Multi-Layer Perceptron and Random Forest,” 2021 Int. Conf. Inf. Commun. Technol. Sustain. Dev. ICICT4SD 2021 - Proc., hal. 280–284, 2021, doi: 10.1109/ICICT4SD50815.2021.9397013.

H. Chen, N. Wang, X. Du, K. Mei, Y. Zhou, dan G. Cai, “Classification Prediction of Breast Cancer Based on Machine Learning,” Comput. Intell. Neurosci., vol. 2023, hal. 1–9, 2023, doi: 10.1155/2023/6530719.

F. Gorgan, M. Taher, R. Mohammad, dan Z. Kermani, “Decision tree models in predicting water quality parameters of dissolved oxygen and phosphorus in lake water,” Sustain. Water Resour. Manag., vol. 9, no. 1, hal. 1–13, 2023, doi: 10.1007/s40899-022-00776-0.

A. Alcántara, I. M. Galván, dan R. Aler, “Deep neural networks for the quantile estimation of regional renewable energy production,” Appl. Intell., hal. 8318–8353, 2022, doi: 10.1007/s10489-022-03958-7.

C. S. Eke, E. Jammeh, X. Li, C. Carroll, S. Pearson, dan E. Ifeachor, “Early Detection of Alzheimer’s Disease with Blood Plasma Proteins Using Support Vector Machines,” IEEE J. Biomed. Heal. Informatics, vol. 25, no. 1, hal. 218–226, 2021, doi: 10.1109/JBHI.2020.2984355.

S. Bengesi, T. Oladunni, R. Olusegun, dan H. Audu, “A Machine Learning-Sentiment Analysis on Monkeypox Outbreak: An Extensive Dataset to Show the Polarity of Public Opinion From Twitter Tweets,” IEEE Access, vol. 11, no. January, hal. 11811–11826, 2023, doi: 10.1109/ACCESS.2023.3242290.

R. Obiedat, R. Qaddoura, A. L. A. M. Al-zoubi, dan L. Al-qaisi, “Sentiment Analysis of Customers ’ Reviews Using a Hybrid Evolutionary SVM-Based Approach in an Imbalanced Data Distribution,” IEEE Access, vol. 10, hal. 22260–22273, 2022, doi: 10.1109/ACCESS.2022.3149482.

A. A. L. Wazrah dan S. Alhumoud, “Sentiment Analysis Using Stacked Gated Recurrent Unit for Arabic Tweets,” IEEE Access, vol. 9, hal. 137176–137187, 2021, doi: 10.1109/ACCESS.2021.3114313.

Abstract viewed = 572 times

Most read articles by the same author(s)