Mix histogram and gray level co-occurrence matrix to improve glaucoma prediction machine learning

Main Article Content

Jumanto Jumanto
Faizal Widya Nugraha
Agus Harjoko
Much Aziz Muslim
Noralhuda N. Alabid

Abstract

Glaucoma is an eye disease that is the second leading cause of blindness. Examination of glaucoma by an ophthalmologist is usually done by observing the retinal image directly. Observations from one doctor to another may differ, depending on their educational background, experience, and psychological condition. Therefore, a glaucoma detection system based on digital image processing is needed. The detection or classification of glaucoma with digital image processing is strongly influenced by the feature extraction method, feature selection, and the type of features used. Many researchers have carried out various kinds of feature extraction for glaucoma detection systems whose accuracy needs to be improved. In general, there are two groups of features, namely morphological features and non-morphological features (image-based features). In this study, it is proposed to detect glaucoma using texture features, namely the GLCM feature extraction method, histograms, and the combined GLCM-histogram extraction method. The GLCM method uses 5 features and the Histogram uses 6 features. To distinguish between glaucoma and non-glaucoma eyes, the multi-layer perceptron (MLP) artificial neural network model serves as a classifier. The data used in this study consisted of 136 fundus images (66 normal images and 70 images affected by glaucoma). The performance obtained with this approach is an accuracy of 93.4%, a sensitivity of 86.6%, and a specificity of 100%.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
J. Jumanto, F. W. . Nugraha, A. Harjoko, M. A. Muslim, and N. N. Alabid, “Mix histogram and gray level co-occurrence matrix to improve glaucoma prediction machine learning”, J. Soft Comput. Explor., vol. 4, no. 1, pp. 13-22, Jan. 2023.
Section
Articles

References

S. Resnikoff et al., “Global data on visual impairment in the year 2002,” Bull. World Health Organ., vol. 82, no. 11, pp. 844–851, 2004. https://pubmed.ncbi.nlm.nih.gov/15640920/

M. Madhumalini and T. M. Devi, “Detection of Glaucoma from Fundus Images Using Novel Evolutionary-Based Deep Neural Network,” J. Digit. Imaging, vol. 35, no. 4, pp. 1008–1022, Aug. 2022. https://pubmed.ncbi.nlm.nih.gov/35274218/

J. Hao et al., “Hybrid Variation-Aware Network for Angle-Closure Assessment in AS-OCT,” IEEE Trans. Med. Imaging, vol. 41, no. 2, pp. 254–265, Feb. 2022. DOI: 10.1109/TMI.2021.3110602. https://doi.org/10.1109/TMI.2021.3110602.

A. Manassakorn et al., “GlauNet: Glaucoma Diagnosis for OCTA Imaging Using a New CNN Architecture,” IEEE Access, vol. 10, pp. 95613–95622, 2022. https://doi.org/10.1109/ACCESS.2022.3204029

P. G. Söderberg, F. Malmberg, and C. Sandberg-Melin, “Further analysis of clinical feasibility of OCT-based glaucoma diagnosis with Pigment epithelium central limit- Inner limit of the retina Minimal Distance (PIMD),” 2017, p. 100450R. https://doi.org/10.1117/12.2260139

M. Juneja, J. S. Minhas, N. Singla, S. Thakur, N. Thakur, and P. Jindal, “Fused framework for glaucoma diagnosis using Optical Coherence Tomography (OCT) images,” Expert Syst. Appl., vol. 201, p. 117202, Sep. 2022. https://doi.org/10.1016/j.eswa.2022.117202

Y. M. Chan et al., “Automated detection of glaucoma using elongated quinary patterns technique with optical coherence tomography angiogram images,” Biomed. Signal Process. Control, vol. 69, no. June, 2021. https://doi.org/10.1016/j.bspc.2021.102895

T. Khalil, M. U. Akram, S. Khalid, and A. Jameel, “An overview of automated glaucoma detection,” in 2017 Computing Conference, 2017, pp. 620–632. https://doi.org/10.1109/SAI.2017.8252161

E. T. Gormus et al., “Exploiting texture information in diagnosing Glaucoma,” in 2017 25th Signal Processing and Communications Applications Conference (SIU), 2017, pp. 1–4. https://doi.org/10.1109/SIU.2017.7960648

P. Sharma et al., “A lightweight deep learning model for automatic segmentation and analysis of ophthalmic images,” Sci. Rep., vol. 12, no. 1, p. 8508, Dec. 2022. http://dx.doi.org/10.1038/s41598-022-12486-w

C. Bowd et al., “Deep Learning Image Analysis of Optical Coherence Tomography Angiography Measured Vessel Density Improves Classification of Healthy and Glaucoma Eyes,” Am. J. Ophthalmol., vol. 236, pp. 298–308, 2022. https://doi.org/10.1016/j.ajo.2021.11.008

N. A. Kako and A. M. Abdulazeez, “Peripapillary Atrophy Segmentation and Classification Methodologies for Glaucoma Image Detection: A Review,” Curr. Med. Imaging Former. Curr. Med. Imaging Rev., vol. 18, no. 11, pp. 1140–1159, Nov. 2022. https://doi.org/10.2174/1573405618666220308112732

C.-W. Wu, H.-Y. Chen, J.-Y. Chen, and C.-H. Lee, “Glaucoma Detection Using Support Vector Machine Method Based on Spectralis OCT,” Diagnostics, vol. 12, no. 2, p. 391, Feb. 2022. https://doi.org/10.3390/diagnostics12020391

A. P. Sunija, V. P. Gopi, and A. K. Krishna, “D-DAGNet: AN IMPROVED HYBRID DEEP NETWORK FOR AUTOMATED CLASSIFICATION OF GLAUCOMA FROM OCT IMAGES,” Biomed. Eng. Appl. Basis Commun., Sep. 2022. https://doi.org/10.4015/S1016237222500429

P. Jeihouni, O. Dehzangi, A. Amireskandari, A. Rezai, and N. M. Nasrabadi, “MultiSDGAN: Translation of OCT Images to Superresolved Segmentation Labels Using Multi-Discriminators in Multi-Stages,” IEEE J. Biomed. Heal. Informatics, vol. 26, no. 4, pp. 1614–1627, 2022. https://doi.org/10.1109/jbhi.2021.3110265

E. Golkar, H. Rabbani, and A. Dehghani, “Hybrid registration of retinal fluorescein angiography and optical coherence tomography images of patients with diabetic retinopathy,” Biomed. Opt. Express, vol. 12, no. 3, p. 1707, Mar. 2021. https://doi.org/10.1364/boe.415939

B. Zhou, F. Mohammadi, J. S. Lim, N. Forouzesh, H. Ghasemzadeh, and N. Amini, “Analysis of Macular Thickness Deviation Maps for Diagnosis of Glaucoma,” 2021, pp. 53–64. http://dx.doi.org/10.1007/978-3-030-90436-4_5

E. Karvonen et al., “Diagnostic performance of modern imaging instruments in glaucoma screening,” Br. J. Ophthalmol., vol. 104, no. 10, pp. 1399–1405, Oct. 2020. https://doi.org/10.1136/bjophthalmol-2019-314795

A. Joshi et al., “Glaucoma Screening Through Level Set for Optic Disc Segmentation and Textural Features for Classification,” in 2018 International Conference on Intelligent and Advanced System (ICIAS), 2018, pp. 1–6. https://doi.org/10.1109/ICIAS.2018.8540615

A. De Gainza et al., “A Metascore of Multiple Imaging Methods to Measure Long-Term Glaucoma Structural Progression,” Transl. Vis. Sci. Technol., vol. 11, no. 9, p. 15, Sep. 2022. https://doi.org/10.1167/tvst.11.9.15

N. Pankova et al., " Evolving Patterns of Hyperfluorescent Fundus Autofluorescence Accompany Retinal Atrophy in the Rat and Mimic Atrophic Age-Related Macular Degeneration,” Transl. Vis. Sci. Technol., vol. 11, no. 3, p. 3, Mar. 2022. https://doi.org/10.1167/tvst.11.3.3

E. N. Iomdina, D. D. Khoziev, and P. V. Luzhnov, “Quantitative assessment of retinal and choroidal blood vessels volume using a voxel processing of optical coherence tomography angiography images,” Opt. Eng., vol. 60, no. 08, Mar. 2021. http://dx.doi.org/10.1117/1.OE.60.8.082020

Y. Ma et al., “ROSE: A Retinal OCT-Angiography Vessel Segmentation Dataset and New Model,” IEEE Trans. Med. Imaging, vol. 40, no. 3, pp. 928–939, Mar. 2021. https://doi.org/10.1109/TMI.2020.3042802

L. J. Bradley et al., “Quantitative Assessment of Experimental Ocular Inflammatory Disease,” Front. Immunol., vol. 12, no. June, pp. 1–12, Jun. 2021. https://doi.org/10.3389/fimmu.2021.630022

A. Septiarini and A. Harjoko, “Automatic glaucoma detection based on the type of features used: A review,” J. Theor. Appl. Inf. Technol., vol. 72, no. 3, pp. 366–375, 2015. http://www.jatit.org/volumes/Vol72No3/7Vol72No3.pdf

M. F. Cordeiro, D. Hill, R. Patel, P. Corazza, J. Maddison, and S. Younis, “Detecting retinal cell stress and apoptosis with DARC: Progression from lab to clinic,” Prog. Retin. Eye Res., vol. 86, p. 100976, Jan. 2022. https://doi.org/10.1016/j.preteyeres.2021.100976

S. S. R. Abidi, P. C. Roy, M. S. Shah, J. Yu, and S. Yan, “A Data Mining Framework for Glaucoma Decision Support Based on Optic Nerve Image Analysis Using Machine Learning Methods,” J. Healthc. Informatics Res., vol. 2, no. 4, pp. 370–401, Dec. 2018. https://doi.org/10.1007/s41666-018-0028-7

H. Masumoto, H. Tabuchi, S. Nakakura, N. Ishitobi, M. Miki, and H. Enno, “Deep-learning Classifier With an Ultrawide-field Scanning Laser Ophthalmoscope Detects Glaucoma Visual Field Severity,” J. Glaucoma, vol. 27, no. 7, pp. 647–652, Jul. 2018. https://doi.org/10.1097/ijg.0000000000000988

W. Gong, X. Lu, and G. Wang, “Asymmetry of Optic Nerve Head Parameters Measured by Confocal Scanning Laser Ophthalmoscopy in Myopic Anisometropic Eyes,” Appl. Sci., vol. 12, no. 8, p. 4047, Apr. 2022. https://doi.org/10.3390/app12084047

N. Nicolini et al., “Assessment of Diabetic Choroidopathy Using Ultra-Widefield Optical Coherence Tomography,” Transl. Vis. Sci. Technol., vol. 11, no. 3, p. 35, Mar. 2022. https://doi.org/10.1167/tvst.11.3.35

T. Soomro, N. Shah, M. Niestrata-Ortiz, T. Yap, E. M. Normando, and M. F. Cordeiro, “Recent advances in imaging technologies for assessment of retinal diseases,” Expert Rev. Med. Devices, vol. 17, no. 10, pp. 1095–1108, Oct. 2020. https://doi.org/10.1080/17434440.2020.1816167

C. Liu and L. Wang, “Functional photoacoustic microscopy of hemodynamics: a review,” Biomed. Eng. Lett., vol. 12, no. 2, pp. 97–124, May 2022. http://dx.doi.org/10.1007/s13534-022-00220-4

S. Das et al., “Feasibility and clinical utility of handheld fundus cameras for retinal imaging,” Eye, no. June 2021, pp. 1–6, Jan. 2022. https://doi.org/10.1038/s41433-021-01926-y

L. Pascal, O. J. Perdomo, X. Bost, B. Huet, S. Otálora, and M. A. Zuluaga, “Multi-task deep learning for glaucoma detection from color fundus images,” Sci. Rep., vol. 12, no. 1, pp. 6–15, 2022. https://doi.org/10.1038/s41598-022-16262-8

Y. Hagiwara et al., “Computer-aided diagnosis of glaucoma using fundus images: A review,” Comput. Methods Programs Biomed., vol. 165, pp. 1–12, 2018. http://dx.doi.org/10.1016/j.cmpb.2018.07.012

N. Varma, S. Yadav, and J. K. P. S. Yadav, “A Short Review on Automatic Detection of Glaucoma Using Fundus Image,” 2023, pp. 493–504. https://link.springer.com/chapter/10.1007/978-981-19-4052-1_49

L. K. Singh, M. Khanna, and S. Thawkar, “A novel hybrid robust architecture for automatic screening of glaucoma using fundus photos, built on feature selection and machine learning‐nature driven computing,” Expert Syst., vol. 39, no. 10, Dec. 2022. https://doi.org/10.1111/exsy.13069

A. Qayyum, W. Sultani, F. Shamshad, R. Tufail, and J. Qadir, “Single-shot retinal image enhancement using untrained and pretrained neural networks priors integrated with analytical image priors,” Comput. Biol. Med., vol. 148, p. 105879, Sep. 2022. https://doi.org/10.1016/j.compbiomed.2022.105879

M. Arhami, A. Desiani, S. Yahdin, A. I. Putri, R. Primartha, and H. Husaini, “Contrast enhancement for improved blood vessels retinal segmentation using top-hat transformation and otsu thresholding,” Int. J. Adv. Intell. Informatics, vol. 8, no. 2, p. 210, Jul. 2022. https://doi.org/10.26555/ijain.v8i2.779

V. V. Starovoitov, Y. I. Golub, and M. M. Lukashevich, “A Universal Retinal Image Template for Automated Screening of Diabetic Retinopathy,” Pattern Recognit. Image Anal., vol. 32, no. 2, pp. 322–331, Jun. 2022. https://link.springer.com/article/10.1134/S1054661822020195

A. Septiarini, A. Harjoko, R. Pulungan, and R. Ekantini, “Optic disc and cup segmentation by automatic thresholding with morphological operation for glaucoma evaluation,” Signal, Image Video Process., vol. 11, no. 5, pp. 945–952, Jul. 2017. https://link.springer.com/article/10.1007/s11760-016-1043-x

F. Guo, W. Li, J. Tang, B. Zou, and Z. Fan, “Automated glaucoma screening method based on image segmentation and feature extraction,” Med. Biol. Eng. Comput., vol. 58, no. 10, pp. 2567–2586, Oct. 2020. http://dx.doi.org/10.1007/s11517-020-02237-2

S. Karthikeyan and N. Rengarajan, “Performance analysis of gray level cooccurrence matrix texture features for glaucoma diagnosis,” Am. J. Appl. Sci., vol. 11, no. 2, pp. 248–257, 2013. http://dx.doi.org/10.3844/ajassp.2014.248.257

U. R. Acharya, S. Dua, X. Du, V. Sree S, and C. K. Chua, “Automated Diagnosis of Glaucoma Using Texture and Higher Order Spectra Features,” IEEE Trans. Inf. Technol. Biomed., vol. 15, no. 3, pp. 449–455, May 2011. https://doi.org/10.1109/titb.2011.2119322

R. Touahri, N. Azizi, N. E. Hammami, M. Aldwairi, N. E. Benzebouchi, and O. Moumene, “Multi source retinal fundus image classification using convolution neural networks fusion and Gabor-based texture representation,” Int. J. Comput. Vis. Robot., vol. 11, no. 4, p. 401, 2021. http://dx.doi.org/10.1504/IJCVR.2021.10037477

D. Yadav, M. P. Sarathi, and M. K. Dutta, “Classification of glaucoma based on texture features using neural networks,” 2014 7th Int. Conf. Contemp. Comput. IC3 2014, pp. 109–112, 2014. https://doi.org/10.1109/IC3.2014.6897157

K. Sonti and D. R. Dhuli, “Shape and texture based identification of glaucoma from retinal fundus images,” Biomed. Signal Process. Control, vol. 73, no. December 2021, p. 103473, 2022. https://doi.org/10.1016/j.bspc.2021.103473

Abstract viewed = 694 times

Most read articles by the same author(s)

1 2 > >>