Improving car price prediction performance using stacking ensemble learning based on ann and random forest

Main Article Content

Yulizchia Malica Pinkan Tanga
Robert Panca R. Simanjuntak
Rofik Rofik
Much Aziz Muslim

Abstract

Determining the right selling price for a car can be a challenge for car sales companies. The selling price of a car is highly influenced by car characteristics such as brand, type, year of production, fuel type, and mileage. Therefore, the research aims to develop a more accurate model of car price prediction model by using a stacking ensemble technique that combines Random Forest and ANN. Random Forest is effective in handling outliers and reducing the risk of overfitting, while ANN has the advantage of capturing complex nonlinear patterns. The results show that the stacking ensemble model combining ANN and Random Forest can predict car sales prices by achieving an R2 value of 0.97. The results of this study can help distributors in selling cars make the right decisions regarding the sales price of cars. To improve the generalization of the model, future research is recommended to try a combination of different ensemble methods and the use of larger and more diverse datasets.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
Y. M. P. Tanga, R. P. R. . Simanjuntak, R. Rofik, and M. A. . Muslim, “Improving car price prediction performance using stacking ensemble learning based on ann and random forest”, J. Soft Comput. Explor., vol. 5, no. 3, pp. 290-298, Sep. 2024.
Section
Articles

References

P. Venkatasubbu and M. Ganesh, “Used Cars Price Prediction using Supervised Learning Techniques,” Int. J. Eng. Adv. Technol., vol. 9, no. 1S3, pp. 216–223, Dec. 2019, doi: 10.35940/ijeat.a1042.1291s319.

A. Fathalla, A. Salah, K. Li, K. Li, and P. Francesco, “Deep end-to-end learning for price prediction of second-hand items,” Knowl. Inf. Syst., vol. 62, no. 12, pp. 4541–4568, 2020, doi: 10.1007/s10115-020-01495-8.

A. Varol, M. Mehdi Karakoç, and G. Çelik, “Car Price Prediction Using An Artificial Neural Network,” 2020.

C. Bo and H. Mammadov, “Car Price Prediction in the Usa By,” vol. 11, no. January, pp. 99–108, 2021.

S. MUTİ and K. YILDIZ, “Using Linear Regression For Used Car Price Prediction,” Int. J. Comput. Exp. Sci. Eng., vol. 9, no. 1, pp. 11–16, 2023, doi: 10.22399/ijcesen.1070505.

N. Patel, “Car Price Prediction,” no. 04, pp. 4856–4860, 2023.

B. Kriswantara, Kurniawati, and H. F. Pardede, “Prediksi Harga Mobil Bekas dengan Machine Learning,” vol. 6, no. March, pp. 1–19, 2021.

B. Cui, Z. Ye, H. Zhao, Z. Renqing, L. Meng, and Y. Yang, “Used Car Price Prediction Based on the Iterative Framework of XGBoost+LightGBM,” Electron., vol. 11, no. 18, 2022, doi: 10.3390/electronics11182932.

B. Saireddy, A. Vamshikrishna, G. Abhilash, and D. Vinith Srinivas, “CAR PRICE PREDICTION USING MACHINE LEARNING,” www.irjmets.com @International Res. J. Mod. Eng., 1655.

R. Rofik, R. Aulia, K. Musaadah, S. S. F. Ardyani, and A. A. Hakim, “Optimization of Credit Scoring Model Using Stacking Ensemble Learning and Oversampling Techniques,” J. Inf. Syst. Explor. Res., vol. 2, no. 1, Dec. 2023, doi: 10.52465/joiser.v2i1.203.

D. A. A. Pertiwi, K. Ahmad, S. N. Salahudin, A. M. Annegrat, and M. A. Muslim, “Using Genetic Algorithm Feature Selection to Optimize XGBoost Performance in Australian Credit,” J. Soft Comput. Explor., vol. 5, no. 1, pp. 92–98, 2024, doi: 10.52465/joscex.v5i1.302.

R. A. Putra and E. Nurmawati, “Prediction-based Stock Portfolio Optimization Using Bidirectional Long Short-Term Memory ( BiLSTM ) and LSTM,” vol. 11, no. 3, pp. 609–620, 2024, doi: 10.15294/sji.v11i3.5941.

A. Nurizki, A. Fitrianto, and A. M. Soleh, “Performance of Ensemble Learning in Diabetic Retinopathy Disease Classification Performance of Ensemble Learning in Diabetic Retinopathy Disease Classification,” vol. 11, no. May, pp. 375–386, 2024, doi: 10.15294/sji.v11i2.4725.

A. S. J. Alexstan, K. M. Monesh, M. Poonkodi, and V. Raj, “Used Car Price Prediction Using Machine Learning,” IoT, Cloud Data Sci., vol. 124, no. April, pp. 512–517, 2023, doi: 10.4028/p-9x4ue8.

A. Ospanova, V. C. Sanap, M. M. Rangila, S. Rahi, S. Badgujar, and Y. Gupta, “Car Price Prediction using Linear Regression Technique of Machine Learning Education 005 View project Infomatics View projaect Car Price Prediction using Linear Regression Technique of Machine Learning,” Artic. Int. J. Innov. Res. Sci. Eng. Technol., vol. 9001, no. April, 2008, doi: 10.15680/IJIRSET.2022.110405.

A. Chandak, P. Ganorkar, S. Sharma, A. Bagmar, and S. Tiwari, “Car Price Prediction Using Machine Learning,” Int. J. Comput. Sci. Eng., vol. 7, no. 5, pp. 444–450, 2019, doi: 10.26438/ijcse/v7i5.444450.

M. Hankar, M. Birjali, and A. Beni-Hssane, “Used Car Price Prediction using Machine Learning: A Case Study,” 11th Int. Symp. Signal, Image, Video Commun. ISIVC 2022 - Conf. Proc., pp. 1–4, 2022, doi: 10.1109/ISIVC54825.2022.9800719.

M. Asghar, K. Mehmood, S. Yasin, and Z. Mehboob Khan, “Used Cars Price Prediction using Machine Learning with Optimal Features,” 2021.

S. Shaprapawad, P. Borugadda, and N. Koshika, “Car Price Prediction:An Application of Machine Learning,” 6th Int. Conf. Inven. Comput. Technol. ICICT 2023 - Proc., no. Icict, pp. 242–248, 2023, doi: 10.1109/ICICT57646.2023.10134142.

A. S. Pillai, “A Deep Learning Approach for Used Car Price Prediction,” vol. 3, no. 3, pp. 31–51, 2022.

P. H. Putra, B. Purba, and Y. A. Dalimunthe, “Random forest and decision tree algorithms for car price prediction,” vol. 1, no. 2, pp. 81–89, 2023.

R. Rosita, D. Ananda Agustina Pertiwi, and O. Gina Khoirunnisa, “Prediction of Hospital Intesive Patients Using Neural Network Algorithm,” J. Soft Comput. Explor., vol. 3, no. 1, pp. 8–11, 2022, doi: 10.52465/joscex.v3i1.61.

A. D. Goenawan and S. Hartati, “The Comparison of K-Nearest Neighbors and Random Forest Algorithm to Recognize Indonesian Sign Language in a Real-Time,” Sci. J. Informatics, vol. 11, no. 1, pp. 237–244, 2024, doi: 10.15294/sji.v11i1.48475.

A. Alhakamy, A. Alhowaity, A. A. Alatawi, and H. Alsaadi, “Are Used Cars More Sustainable? Price Prediction Based on Linear Regression,” Sustainability, vol. 15, no. 2, p. 911, 2023, doi: 10.3390/su15020911.

D. Zafeiris, S. Rutella, and G. R. Ball, “An Artificial Neural Network Integrated Pipeline for Biomarker Discovery Using Alzheimer’s Disease as a Case Study,” Comput. Struct. Biotechnol. J., vol. 16, pp. 77–87, 2018, doi: 10.1016/j.csbj.2018.02.001.

E. Gegic, B. Isakovic, D. Keco, Z. Masetic, and J. Kevric, “Car price prediction using machine learning techniques,” TEM J., vol. 8, no. 1, pp. 113–118, Feb. 2019, doi: 10.18421/TEM81-16.

G. Laudato et al., “Identification of R-peak occurrences in compressed ECG signals,” in 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA), IEEE, Jun. 2020, pp. 1–6. doi: 10.1109/MeMeA49120.2020.9137207.

Abstract viewed = 169 times

Most read articles by the same author(s)